NASA Contractor Report 198057

On-Line Modal State
Monitoring of Slowly
Time-Varying Structures

Erik A. Johnson, Lawrence A. Bergman, and Petros G. Voulgaris
Department of Aeronautical and Astronautical Engineering
University of lllinois at Urbana-Champaign

306 Talbot Laboratory, MC-236

104 South Wright Street

Urbana, IL 61801

Prepared for:

NASA Dryden Flight Research Center
Edwards, California

Contract NASA NAG 2-4001

1997

National Aeronautics and
Space Administration

Dryden Flight Research Center
Edwards, California 93523-0273

NOTICE

Use of trade names or names of manufacturers in this document does not constitute an official
endorsement of such products or manufacturers, either expressed or implied, by the National
Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information National Technical Information Service
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161

Price Code: A16 Price Code: A16

ACKNOWLEDGMENTS

The authors would like to thank NASA Dryden Flight Research Center for partial support of
this work under NASA contract NAG 2-4001.

Special thanks to Mr. Larry Freudinger and Mr. Marty Brenner and their group for bringing
this interesting problem to the authors’ attention. The collaboration has been greatly appreciated.

Acknowledgments 2

TABLE OF CONTENTS

1.0 INETOAQUCLION. ...c..cieiiiiietirccienceiret ettt et sae st s e s bt e s e e s se e st s eta e b assberasaessesssensenn 5
2.0 Review of Proposed Research ODJECHVEScccceveeveiicienmiccinieennentenesereetre e eaeens 6
3.0 Spatial Modal FIlers........coccceririniiiniiiiniiicciiiiiiicntcatestrtbsntesssseeetsanesnesesacosssasessassesasens 8
3.1 Development and Use of Modal FIIErscooveiiimiiniiiiniiiniiiiiiinrcenirecir e, 8
3.1.1 Analytically-Derived Spatial Modal Filters......c.cc.ooceivrumiiiirininniciemmiiiiriinnminesenes 8

3.1.2 Experimentally-Determined Modal Filters.........ccovvvriimiimiinneniiiiinneeinnnennineesesnee. 10

3.1.3 The Ideal Modal Filter......cciuieieiiiciiiiiei i ceccerece e ee s rnesnseasonassssnsensnosaraasansens 12

3.2 Modal Filter Software DevelOPmENt..........cccceeueeruiiriiinirecreercriereeeereesseessseesareeseesessnesvaenes 14

3.3 Evaluation of Modal Filter Usefulness in On-line Monitoringccccceveecivveeeirninnneesescnnennn. 15

4.0 Structural System Identification Methodsccovvivviiiinininiininiincncceirceceneeeae 20
4.1 H_-based System IdentifiCationcceceeruiereeerieernreceerressnrestenseresseessseseeessenesseassssasssnasnne 20
4.1.1 SUMMAry Of Previous WOTKceveeeerieiiieeeeseereeiinrecteenieseseiseeseraeesensannsneeessessessassasssnseesenes 21

4.1.2 The H_-based Identification AIZOTItNINS ...cceeirireriieniiirierereierioreirisiesrassessssssssssserssessesessansoens 22

4.1.3 Example I of the H,.-based Identification AIZOTIthIScc.cveeeerrvreerirrrereerecormeeeersisseeeessneeenns 31

4.1.4 Example II of the H_.-based Identification AlgOMthMS........c..cecrvervieerrereeeriereericreensirneesiaeesnn 37

4.1.5 Evaluation of the H,.-based Identification AIZOMthINS ...ecveeeeeireeeerreeierrirrrreeeseeseesracrnneerenereens 39

4.2 Eigensystem Realization AlgOrithmcccccocvviiviiiiniinnniiniinn e 42

4.3 Parametric Time-Domain Methods.......ccccceerreiiirreiiiiienniiciiniieenieecseseeee e e e seesneeeons 44
4.3.1 Time-Domain Least-Squares Methodscc.evecvreriveirienronercnnnerionessmiesoreenssaseesessnesonne 45

4.3.2 Recursive Least-SqUares MEthoGS «......eeereruererrrneeersarveriesorsnecosseessssosnsesssssseesssesssnenensessons 46

4.3.3 Instrumental Variable Methodsccecceiuiriieirerereiiveneteeesssreesseeseessssssessrnesesssssssessssssnsenns 48

4.4 Comparison of Various System Identification Methodscccoccerrviiinniiiniiinicienicinenecneen. 49

5.0 Two-Stage Adaptive MONITOTING......c..cooiriiriineriiiiieiicteneere et sae st sc et ssnsaseens 50
5.1 Basic Design of a Two-Stage Algorithimcoocvveeiriieriiicirieecertee e e 50

5.2 Example of a Two-Stage AIZOrithmccooceiiiiiiiiiiiiiiiinieiee st cerree e 53
5.2.1 Effect of Algorithm Parameters on 2 SDOF SYStEMccvvicrevreriereeerrovivnrmeereresressessonsnnnsesesees 53

5.2.2 Tracking a Time-Varying SDOF SyStemM.....cc.cccceerrrueeerrenriirecierecsarneessssseerseessseeessesssnsesosss 54

5.2.3 Tracking Two Time-Varying MDOF SYSIEIMS.....cccervceeirrecrrriearerrecscsreeesessessersessnsteeensesssesesss 59

5.2.4 Observations on Two-Stage Adaptive MONItOTING.....cceerrevrrireieieeerireerersarnersessneeresssssneeeess 71

6.0 Conclusions and Future DIr€ctionccocviiiiivieeiiiniei ettt 72
7.0 REEICICES. ... ettt sttt s te et s s st s sase e s bre s s s rea s snaes s nenees 73

Table of Contents 3

TABLE OF CONTENTS (cont.)

8.0 Appendix A: Computer COAES......cvovrrmrirmniiermcisiiiiinisi e 81
8.1 MRIMYV COGES ..uvvveerereeeerissiriseisereeseisererasrasseessissessssssassssasssssssssssnssessssssneessessstesossssssesnnesses 81
8.1.1 mrmv . m — Modified Reciprocal Modal VECIOTcovrieiteriienmnnieniencenniitsiiesssnecennsone 81
8.1.2 mrmv_test_adapt .m — Evaluation of MRMV L......cciiiiiniiiiiiiiieniencnnnniisesinanns 86
8.1.3 mrmvtool .m — Graphical User Interface for mrmv functionccceeenvirimniiiinniiiinenicennnee 91
8.1.4 mrmvtool_demo.m — Demo Script for MRMVTOOL.....ceeiriiiuerrmieiieneineiciiniiniiciiinienns 110
8.1.5 ndof . m — Simple n Degree of Freedom SYSIEMSevvevineesrretiisiniiniiitiiiiitesetsnnenas 115
8.1.6 normv.m — Compute Norm of COIUMN VECIOTS ...c.vvureiersriiteitirininninininniinsstessnnsenasones 118
8.1.7 sbys2stack.m— Stack Side-by-Side BIOCKSecveevrevinesieniinimicniniiiiintsne 119
8.1.8 stack2sbys .m— Unstack Blocks to Side-by-Sidecovcevviniimninniiniiniiniii, 119
8.19 str2strmat . m— String Conversion ULHLYcoveereerieesiemienenncemiiiistiininie s 120

8.2 H_-based Identification COAES......covruerrrrrierirmesensricstsitniist e 122
82.1 hinfid.m— H.-based Identificationccorvuiirmmenrieriinnnceiinien it 122
82.2 hinfid_test.m— Quick Test of hinfid H,.-based Identificationcccoeuirnnriniinncns 127
82.3 hinfid_examplel.m— Example I of H-based Identificationcccconiiiviiiennniininnnns 129
82.4 hinfid_example2.m— Example II of H,-based Identification..........cocceevvveeniennnnianncn. 134
8.2.5 t £2str.m — Convert Transfer FUNCHON t0 SN ...ccvvviiviiiiiimmrieniisiiicsintiieninn e, 140
8.2.6 poly2text .m — Convert Polynomial t0 String......c.ccoerivisimiiminmimninin ittt 142

8.3 Eigensystem Realization Algorithm COdescooviiiiiieniieiiincinnii s 144
8.3.1 era.m— Eigensystem Realization AIGOtIM ...ccvvveririnitiniiiiiiiitii s 144
832 era_test .m— Simple ERA EXaMPIEcoourviinienirinieinieniieneiiiiisiett st 149

8.4 Two-Stage Adaptive Monitoring Codesceerevemsiiieinninimimiinnisn i 150
8.4.1 rarx_test .m— Evaluating a Two-Stage Adaptive MONItOTINg.covvieiriiiiiiiniinueesniionicenes 150
8.4.2 rarx_test_run.m— Evaluating Several Two-Stage Adaptive Monitoring Examples 154
8.4.3 thm2rts .m— Convert rarx Identified Model to Modal Characteristicscocoeieiuunannnse 163
8.4.4 ss2modal .m — Convert General State-Space System to Modal State-Spacecccveenes 165
8.4.5 rarx_kf .m— On-line Monitoring via a Kalman Filterccccoeviniiniiiieniinn, 167
8.4.6 rarx_piecewise.m— RARX Identification in SEgmMENts.......ccoviiremnmmnienienniceninsnneins 170

9.0 Appendix B: Abstracts Related to H,-based Identification.........ccovcervieiniiiveeninnensnnasnnneee 171

Table of Contents 4

1.0 INTRODUCTION

It may be desirable to monitor the response of structural systems for various purposes. One
such purpose may be to monitor stability in order to predict and/or avoid the onset of certain types
of pathological behavior; for example, flutter. Another purpose might be to examine information
such as frequencies, damping, and response of critical modes. Furthermore, on-line monitoring
may be required for detecting structural damage or, conversely, verifying structural integrity.
Adaptive on-line control also requires the monitoring of structural response and characteristics.

Monitoring structural characteristics is not, however, as straightforward as one might expect,
particularly if the goal is real-time, on-line monitoring of slowly time-varying systems with
unmodeled dynamics, unknown external forces, rapidly changing control forces, and various noise
sources associated with real measurements.

Structures for which this study is applicable include those whose equations of motion couple
with those of aerodynamics or hydrodynamics, where the characteristics of the fluid (e.g.,
pressure, velocity, etc.) may change, causing an effective change in the structural dynamics. Two
very different structures that may exhibit such behavior are aircraft and offshore platforms, as
shown in Fig. 1.

The efficacy of modal filters for monitoring some structural systems was demonstrated by
Freudinger (1990, 1991). The applicability of this method to slowly time-varying structures is
examined below, followed by a similar examination of several system identification methods,
especially H_-based identification, and the recommendation of a two-stage adaptive monitoring
scheme.

F-14 in flight

The Heidrun tether-leg platform
(350m deep, North Sea near Norway)

Figure 1: Two examples of structures that may vary slowly in time due
to coupling with aerodynamic or hydrodynamic phenomena.

Introduction 5

2.0 REVIEW OF PROPOSED RESEARCH OBJECTIVES

The dynamics of a linear structural system can be represented in a general manner as
Mi+Cx+Kx =f =f, +f, (D)

where x denotes the n generalized degrees of freedom and f is a forcing term that can be decom-
posed into known and unknown parts, f, and f,, respectively. The known f, may include forces
that are generated by control actuators, forces due to acceleration, and in general forces that can be
directly measured. The unknown f, consists of unmodeled and unmeasurable exogenous distur-
bances (e.g., forces due to turbulence, wind gusts, etc.). Furthermore, it will be assumed that the
mass, damping, and stiffness matrices (M, C, and K, respectively) are slowly time varying; that
is, they change slowly with respect to the dynamics of the structure.

In most real-world situations, a limited number of sensors are available to collect data.
Moreover, sensor noise is invariably present, corrupting the measurements. Therefore, in general
the measurement equations can be described by

y=Gz+v (2)

where G is an n,X2n matrix, n, denotes the number of sensors, z = [xT XxT]T the states of
the system, and v the measurement noise. The basic objective of the proposed research was the
construction of algorithms which identify and isolate the modes of the system under arbitrary con-
ditions (e.g., an aircraft while in flight) based on a limited number of noisy measurements. Figure
2 shows a block diagram representation of a system using such monitoring algorithms.

There are several additional requirements that must be addressed for a monitoring algorithm
to be useful in a real-world problem. The first is that on-line monitoring is typically restricted to
less extensive, and often less accurate, testing than a baseline or laboratory test. This may include
a limitation on the number, location, and types of sensors. For example, an aircraft can be instru-
mented thoroughly in a ground test, but in flight one is generally limited to sensors inside the
aircraft or embedded within the aircraft structure itself. Additionally, limited data acquisition
hardware may further limit the available sensor array.

SDOF

Filter Modes

4

f, — f Mx+Cx+Kx =f 2+ G

Figure 2: Block diagram representation of the structure and filtered output.

Review of Proposed Research Objectives 6

Available computational ability is generally different between laboratory and real-world envi-
ronments. This certainly must be considered since identification of a complex structure can be
computationally intensive. Of course, given a specific level of available computing power, there is
generally a trade-off between accuracy of any identified structural parameters and the speed at
which those parameters can be updated to track a changing structural system.

There are, then, four basic objectives:

1. Investigate the applicability of reciprocal modal vectors to the problem of on-line
identification and monitoring of slowly time-varying structures.

2. Explore the various H_-based identification algorithms and evaluate their
usefulness in on-line monitoring.

3. Analyze methods of modal filtering using other identification algorithms to
monitor slowly time-varying structures.

4. Recommend a strategy for on-line monitoring that is robust, accurate, and
implementable.

Review of Proposed Research Objectives 7

3.0 SPATIAL MODAL FILTERS

Freudinger (1990, 1991) and Shelley (1991) demonstrated the efficacy of the concept of
modal filtering via reciprocal modal vectors. They showed that the reciprocal modal vectors
perform precisely as modal state observers, that the observer can be constructed from purely
experimental data, and that the resulting transformation is relatively insensitive to certain stiffness
and damping parameter changes that preserve the structure of the transformation. This appears to
hold for data of reasonable quality, even when the input forces are unknown.

However, difficulties arise when perturbations in the identified system parameters, as would
occur in an aircraft in flight, affect the transformation. Furthermore, the closed loop behavior of
the system may be considerably different from the open loop behavior observed in baseline labo-
ratory test and from which the transformation is derived. Hence, the transformation will, in
general, not be preserved.

Thus, while the concept of the modal state observer has been demonstrated, questions remain
regarding its use for identification of systems having significant uncertainty and/or time-variance
in their physical, control, and input parameters. In order to evaluate the degree of usefulness of the
reciprocal modal vector method, its development and theoretical basis will be examined.

3.1 DEVELOPMENT AND USE OF MODAL FILTERS

The modal filter finds its roots in the distributed parameter derivation of spatial modal filters
by Meirovitch and colleagues in the 1980’s (Oz and Meirovitch, 1983, 1984; Meirovitch and
Baruh, 1982, 1985; Meirovitch and Ghosh, 1987). The extension to experimentally-determined
modal filters was done by Allemang and colleagues in the early 1990’s (Zhang, Allemang, and
Brown, 1990; Freudinger, 1990, 1991; Shelley, 1991). A summary of these derivations is given
below, followed by that of an ideal modal filter.

3.1.1 Analytically-Derived Spatial Modal Filters

The basic spatial modal filter derived by Meirovitch (Meirovitch and Baruh, 1982) can be
summarized as follows. A self-adjoint (undamped) distributed parameter system can be described
by the equation of motion

p(x)QQWT(t’Z‘;‘_) +Lew(x,) = f(x,1),x€ D 3)

where w(x, 1), p(x), and f(x, ¢) are displacement, density, and force, respectively, at a location x
and time ¢, and L, is a linear differential stiffness operator. The system is subject to some
boundary conditions

Lw(x,1) =0,xedD,i=1,..,p C))

where L, are boundary operators. The associated eigenvalue problem is given by the differential
equations

Spatial Modal Filters 8

L W, (x) = A,p(x) W,(x), xe D re 12 ... 5)
LWx) =0, i=1,...,p, xedD

The solution consists of an infinite set of eigenvalues A, and associated eigenfunctions W (x).
Since it is assumed that the stiffness operator L is self-adjoint, and further assuming that it is
positive definite, then the eigenvalues are all positive, can be ordered such that 4, <4,< ..., and
are related to natural frequencies by A, = @?. Also due to the self-adjointness, the eigenfunc-
tions are orthogonal and can be normalized such that

[P W, W, (x)dx = &, (6)

D

The system response can then be given by a weighted infinite sum of the eigenfunctions

wx, 1) = 3 10O W,x) @)

r=1

and the problem, when substituting (7) into the original equation of motion (3), simplifies to an
infinite number of second-order ordinary differential equations in the modal coordinates

nO+ain@ = £, r=12,.. 8)

where f (f) is a modal force given by
£ = [W@fx ndx ©)
D

The modal coordinate 7,(¢) can be found in terms of the displacement w(x, £) by multiplying (7)
by p(x) W, (x), integrating over D, and using the orthogonality relation (6) to get

n,() = [p0) W,0w(x, dx (10)
D

Thus, modal displacements can be determined from the physical displacement of the system.
Meirovitch recognized, however, that discrete sensors are the most common, so the distributed dis-
placement can be estimated, W(x,), by fitting eigenfunctions or other interpolation functions to
the discrete measurements. This interpolation could also be done using Rayleigh-Ritz or finite
element methods.

Meirovitch used this development to derive independent modal space controllers for various
problems, including flutter in a very simple bridge model (Meirovitch and Ghosh, 1987) and
vibration in a simply-supported Euler-Bernoulli beam (Canfield and Meirovitch, 1994).

Spatial Modal Filters 9

3.1.2 Experimentally-Determined Modal Filters

The Enhanced Frequency Response Function (EFRF) technique developed by Allemang
(1980) included the basics of the reciprocal modal vector method, though he did not denote it as
such at that time. The EFRF technique took weighted sums of frequency response functions
(FRFs) to attempt to enhance the amplitude of a mode of interest to better estimate the mode’s
frequency and damping with single degree of freedom (SDOF) parameter estimation methods.

This method was modified by Zhang, Allemang, and Brown (1990), called the Reciprocal
Modal Vector (RMV) method, to determine the best weighting coefficients such that the resulting
frequency response most closely approaches that of a single degree of freedom system. The
extension to multi-input systems was done by Freudinger (1990, 1991), facilitating the use of
additional knowledge gained by multi-reference data. Some formalization was done by Shelley
(1991), renaming the method the Modified Reciprocal Modal Vector (MRMYV) method. He inves-
tigated the existence and uniqueness of the reciprocal modal vectors and found that they are not
always unique, depending on the number of sensors and other system parameters. Experimental
evaluation of the RMV and MRMV methods was performed by Freudinger (1990, 1991) and
Shelley (1991).

In its simplest form, the Reciprocal Modal Vector method can be stated as:

Determine the coefficients of a linear combination of transfer functions from one
input to all sensor outputs that results in a minimal difference from a single degree
of freedom transfer function with a given pole pair, where “minimal” is determined
in a least-square sense.

Shelley does study the issue of spatial distribution of sensors sufficient to accurately determine
modal response. It must be noted also that the method requires that the system be classically
damped. A review of the single-reference development by Shelley (1991) follows.

The transfer function from the qth input to displacement sensor outputs for a real normal
mode may be given by a partial fraction expansion

I']q(a)) = 2 [¢rQr¢qr _ ¢rQr¢Qr:| (1 1)

-1, iw-A;

r=1

where A, and A are the complex pole pair corresponding to the r'" mode, ¢, is the associated
eigenvector, ¢, is the modal coefficient of the ' mode at the qth excitation point, and Q, is a
modal scale factor. (If the real normal mode criterion is relaxed, the second term in (11) will have
additional * terms, where * represents complex conjugate.) It is then stated that a reciprocal
modal vector Y, exists and can be scaled such that

~-i,r=s

\l’;rq),Q,(qu = _isr: = { 0. r#s (12)

Spatial Modal Filters 10

This is essentially an orthogonality relation, where the reciprocal modal vector for one mode is
orthogonal to all eigenvectors but the one corresponding to the same mode. Premultiplying (11)

by YT gives

. ‘I’.s:r¢rQr¢ r \l’sT¢rQr¢ r
W H@ = 3, { oy N iw—).;‘q:l

r=1

(13)

Simplifying by using (12) causes all terms but r = s (i.e., all terms but that for the s ™ mode) to
drop out, leaving

—i i

V@ = o e x (14)

If (14) is evaluated at m distinct frequencies, a matrix equation can be written

- B r : — + - ! * ‘
qu(a)l) qu(a)l) . }Inaq(wl) la),—l, lml_lr
—i i
qu(wz) HZq(wz) Hnoq(wz) v, = io,- A, +ico2—l;‘ > (15
H (w,) B[(0,)|...| H, (0,) —i : i
L . +
| iw, -4, iw,-A)

where each column on the left hand side is a transfer function from one input to an output. This
can be written more compactly as

Hv, = B, (16)

The solution for the reciprocal modal vector ¥, is not unique if the number of sensors n,, is
greater than the number of effective modes of the system. A unique minimum norm solution,
however, may exist and can be found by using a pseudo-inverse (e.g., a Moore-Penrose general-
ized inverse), denoted by ()*

v, = [H]]'B, (17)

The elements of Y, computed in this manner are generally complex numbers, but for real
normal modes, this does not make physical sense. Thus the reciprocal modal vector may be
restricted to the closest real solution by replacing (17) with

Spatial Modal Filters 11

~ 1t
Re]| [Re B,
v, = T (18)
Im ﬁq Im Br
The extension to multi-input reciprocal modal vectors was done by Freudinger (1990, 1991)
and can be computed by replacing (17) with

v, AT 0 0 - O] 8
~ 7Y 'r r
—¢2r/¢1r ﬁz Br 0--0 0
| ~bs/8 [= |H5 0B, 0)0 (19)
i IR I
L _¢n‘.r/¢lr) ﬁ;}" 0 0 e Br

where H is the FRF matrix from the g mput to all sensors at the m frequencies, and d,, is the
element of the eigenvector ¢, which corresponds to the st input degree of freedom. A method
similar to that in (18) can be used to restrict the solution of (19) to non-complex solutions.

Removing the restriction of using displacement sensors in the above derivation can be accom-
modated by redefining the SDOF frequency response function (@) as

i

B () = .] 2. o7 displacement
-0 .
= t
B (w) = . l o 7 velocity (20)
B(w) = i —ia? acceleration

+
ion-1, iw-A

This method has been applied to the active modal structural control of a 250-foot span steel
truss bridge in Ohio, resulting in a 75% decrease in bridge response (Shelley, Aktan, and Lee,
1994; Shelley, Aktan, Brown, and Allemang, 1994; Shelley, Lee, Aksel, and Aktan; 1995).

3.1.3 The Ideal Modal Filter

Consider the n degree of freedom system given by
Mx+Cx+Kx = f (21)
This could be a lumped mass or spatially-discretized distributed parameter system, perhaps dis-

cretized via a Rayleigh-Ritz or finite element formulation. The n eigenvalues and eigenvectors of
the undamped system can be found via the generalized eigenvalue problem

K¢, = o’M¢, (22)

r

Spatial Modal Filters 12

Premultiplying (21) by ®T, the transpose of the eigenmatrix

D= [¢,...9,] (23)

and substituting x = ®n gives
OTM D1 + OTCON + DTKPn = OTf (24)
Assuming classical damping (which here is equivalent to assuming that the damping C is a linear

combination of the mass M and stiffness K), the system will decouple into n single degree of
freedom equations

fi,+2§ 0N +wn, = ¢If, r=1,..,n (25)
and furthermore, ®T = @®-! such that
n = ®Tx (26)
which implies that there exists a vector ¢, such that
n, = ¢ix 27)

Thus, measured displacements x can be converted directly to the r modal displacement 7,.
Similarly, modal velocities X or accelerations X can be converted to modal velocities 77, or accel-
erations 7j,. If M and K are known and all generalized coordinates are measured, then the exact
reciprocal modal matrix is ®T.

Given the transfer functions Gp q(a)) from fq to x,, then there should exist a ¢, such that

i i
G14(@) | Gp(@)|...| G, (@) i -A; o -4,
i i
Gqcr qu(a)z) qu(wz) ves G”oq(wz) iwz—-/'\,:—ia)z—/l, > — Br (28)
G1,(@,) |Gy (@,) ...|G, 4(@,) P
\ iwm—l: l'wm—lr;

where A_and A? are the complex poles of the r™ mode (i.e., A, A
and P, is a constant (-2, [1 - {2] 1/2) multiplied by the transfer function from f, to modal dis-

placement 7, evaluated at the m frequencies. If m

computed directly using

¢, = G;'B,

= -l +ion[1-L2]12)

n, (and G, is not singular) then ¢, can be

(29)

Spatial Modal Filters

Otherwise if m > n, (i.e., there are more spectral measurement lines than degrees of freedom), a
least-squares approximation can be found using a pseudo inverse

¢, = G;B, (30)

If the transfer functions G, (@) are instead from f, to x, or %, then the right hand side B,
should be modified as in (20).

3.2 MODAL FILTER SOFTWARE DEVELOPMENT

A number of MATLAB® programs were written to facilitate the analysis of the Modified
Reciprocal Modal Vector method. Primary among these is mrmv.m, which is based on that
published by Shelley in his Ph.D. disseration (1991), but was reworked for two reasons. Shelley’s
code was written as a MATLAB® script which is compiled and run line-by-line; it has been
replaced by a function which is compiled the first time it is run within a MATLAB® session and
subsequently runs significantly faster. Further improvement was made by removing many
confusing options and significant user interaction, leading to a yet more efficient and readable
code. The necessary options are still available via arguments to mrmv.

Figure 3: MRMVTool: a graphical user interface for computing the reciprocal modal vectors.

Spatial Modal Filters 14

In order to make the use of mrmv easier, a graphical user interface (GUI) front-end, called
mrmvtool, has been coded; a picture of this GUI is shown in Fig. 3.

These programs, as well as most of those used in the following section to evaluate MRMVs,
are included in the Appendix.

3.3 EVALUATION OF MODAL FILTER USEFULNESS IN ON-LINE MONITORING

To evaluate the usefulness and limitations of the reciprocal modal filter method, the six degree
of freedom, six-mode, lumped-mass structure shown in Fig. 4 is used, where sensors measure the
absolute displacement of each mass. The effectiveness of the modal filter method is checked by
computing the reciprocal modal vectors from a baseline system in which all of the masses,
dampers, and springs are identical; i.e.,

m=m, ¢c.=c¢, k=%k, i=1,...,6 (31

To simulate an ideal, zero-noise, situation, the exact frequency responses of this system to inputs
to each mass are used to compute the matrix of reciprocal modal vectors. The computed recipro-
cal modal matrix is

0.257782 0.456509 0.550656 0.518654 0.367834 0.132748
-0.456509 —0.518654 —0.132748 0.367834 0.550656 0.257782
v _ | 0550656 0.132748 —0.518654 —0.257782 0.456509 0.367834 (32)

compted 7| _0.518654 0.367834 0.257782 —0.550656 0.132748 0.456509
0.367834 —0.550656 0.456509 —0.132748 ~0.257782 0.518654
-0.132748 0.257782 —0.367834 0.456509 —0.518654 0.550656

The norm (largest singular value) of the error (Weomputed — Wexaer) is 1.7821x107 and the
maximum absolute value of the elements of the error is 1.2545x107!*; thus the reciprocal modal
vectors are nearly perfect.

This modal filter will then be used to try to decouple the exact transfer functions of the
system, with several modifications. Experimentally-measured transfer functions will, of course,
include some noise, and the performance of the modal filter would be expected to be somewhat
degraded. Thus this noise-free simulation is a best-case scenario and can be considered an upper
bound on the modal filter performance.

Figure 4: A simple 6 degree of freedom system.

Spatial Modal Filters 15

The first system modification to be tested is where all of the masses change by an equal ratio

m; = Um (33)
The modal filter effectiveness is impervious to such a system change, as can be seen in Fig. 5
which shows the decoupled mode 6 (the other modes all decouple in a like manner). A similar
effect is seen when the damping coefficients all change

c, =)¢ (34)

4

such that the reciprocal modal filter also perfectly decouples the modes (Fig. 6).

The same phenomenon does not, however, result when one mass changes. Figure 7 shows the
attempt to decouple mode 6 when the 3" mass has changed sufficiently to cause small shifts in the
frequency of mode 6. The corresponding phase plot is shown in Fig. 8, which displays the same
rapid degradation of the modal filter effectiveness for even a few percent change in modal fre-
quency. It must be noted that use of acceleration sensors improves the situation somewhat for
mode 6 as can be seen in Fig. 9; but other modes display worse results using acceleration sensors
rather than displacement sensors.

The common thread throughout is that the reciprocal modal filter works fine when the
modeshape has not changed. That this should be so is obvious from the derivation above of the
ideal modal filter from the undamped equation of motion — the ideal modal filter is merely a
function of the eigenmatrix of the undamped system. So it may be concluded that the modal filter

10 T

- 0.0% frog, shift N
e -8.7% freq. shift
-+ ~18.4% freq shift
—— -293% freq, shift

transfer function magnitude

-
(=]
T

—— estimated
- — —actual

10° !
10" 10°
frequency [%}

Figure 5: Decoupled mode 6 when all masses change by an equal ratio.

Spatial Modal Filters 16

10 T

3
£
g
=
g 10°
<
g
10" .
10" 10°
frequency [22]

Figure 6: Decoupled mode 6 when all damping coefficients change by an equal ratio.

10 T
3
g
=]
£ 10° 4
g
=
i
. T 0.0% freq. shift
V| e _2.3% freq. shif
—— 4)1% freq. shift
———— -5.5% freq. shift
estimated
— — — actual
-y
10 .
10" 10°

nds
frequency [?]

Figure 7: Attempt to decouple mode 6 when one mass changes — transfer function magnitude.

Spatial Modal Filters 17

sr 0.0% freq. shift
-2.3% freq. shift
———— —4.1% freq. shift
-5.5% freq. shift
5 -
I ———— estimated
"g - - —actal
Iy
g4
a
=]
g
<3r \
& |
g \ |
2t ! |
i
i
/
.4 v
0 1
10" 10°
frequency [22]

Figure 8: Attempt to decouple mode 6 when one mass changes — transfer function phase.

10 T

0.0% freq. shift
———— ~2.3% freq, shift
e ~4.1% freq. shift
—-5.5% freq. shift

py
[=]
-]
T

—— estimated
- — —actual

transfer function magnitude
-
=)

-
o-
®

-3 {

)
frequency ['E]

Figure 9: Attempt to decouple mode 6 when one mass changes — acceleration sensors.

Spatial Modal Filters 18

is useful for systems whose characteristics are unchanging, or at least whose modeshapes do not
change. This criterion may be met by some structural systems, but it lacks the generality desired
in this study.

There are other practical limitations to the use of the reciprocal modal vector method for on-
line monitoring of slowly time-varying systems. The reciprocal modal vector requires on-line the
same array of sensors — the same number, location, and types of sensors — used to compute the
reciprocal modal vector. Due to the fact that on-line monitoring is often restricted to a reduced or
different array of sensors, this limits the practical usefulness of the reciprocal modal filter method.

Another concern is the issue of uniqueness. The reciprocal modal vectors are not necessarily
unique. Scenarios can be constructed in which computed reciprocal modal vectors are signifi-
cantly shifted from the exact solution. In such situations, using filtered response may produce
inaccurate results and non-conservatively estimate damage to the system or the onset of behavior
like flutter.

There is also concern about the accuracy of the poles used to compute the reciprocal modal
vectors. If these pole estimates are poor, the modal filter will also function poorly. A more robust
method is required.

A method to accurately update the reciprocal modal vectors to reflect changes in system
modeshapes would be ideal, but tracking eigenvector changes is difficult in general, and particu-
larly so when less than full state information is available (Beck, 1996; Beck and Vanik, 1996).

To summarize, the modal filter works well to monitor systems whose modeshapes are
unchanging and that may be fully instrumented. However, to use the reciprocal modal filter to
identify the modal poles of a time-varying system is fraught with difficulties in the general case
where changes in the system will cause changes in the shapes of the modes, thus invalidating any
response filtered by reciprocal modal vectors.

Spatial Modal Filters 19

4.0 STRUCTURAL SYSTEM IDENTIFICATION METHODS

There are several ways to classify the various system identification methods that are applica-
ble to structural systems. One division is parametric vs. non-parametric identification; the former
parameterizes the system, using a given model structure, with a finite number of unknown param-
eters, whereas the latter typically models the system as a set of functions, generally the transfer
functions themselves, and estimates these functions usually by correlation or spectral analysis.
The focus here is on parametric methods since modal characteristics are of primary interest, and
because non-parametric methods typically require input-output data, which may not always be
available.

Various frequency domain least-squares methods exist to match a parametric model of a
transfer function to measured transfer function data. Such methods date back to the work of Levy
(1959) who parameterized a continuous-time transfer function by the coefficients of numerator
and denominator polynomials, whereas others have used Chebyshev polynomials (e.g., Adcock,
1987). Improvements on these methods have had some limited success; for example, Sanathanan
and Koerner proposed an iterative method (1963) that often arrives at a better solution, but is not
guaranteed to converge.

Covariance and singular value decomposition methods are another rough class of identifica-
tion methods. This class includes the Eigensystem Realization Algorithm (ERA), developed by
Juang and Pappa (1985), which uses a generalized Hankel matrix of the system Markov parame-
ters to identify system parameters. This algorithm was later extended to handle auto- and cross-
correlation data directly (ERA/DC) (Juang, 1994). Another method in this class is g-Markov
COVER (Liu and Skelton, 1993), which under certain conditions produces results identical to
ERA/DC (Peterson, 1993). The Frequency domain Observability Range Space Extraction
(FORSE) method (Jacques, 1994) uses frequency domain data directly, and in the limit as the
number of data points tends to infinity gives the same results as g-Markov COVER. The subspace -
methods, such as N4SID (Numerical algorithms for Subspace State-Space System IDentification)
(Van Overschee and De Moor, 1994, 1995; Viberg, 1995), also fall into this classification.

The requirements of H,, robust control have motivated recent work in H_-based identifica-
tion. Such control algorithms typically require knowledge of the bounds on the uncertainty in the
plant model, but most identification methods cannot provide this information to the H_, control
designer.

Undoubtedly, the best-known class of identification methods comprises the various time-
domain least-squares methods. These are distinguished from other methods by their ease of use
and their implementation within software packages such as MATLAB®.

In the sections below, H._-based identification will be examined in detail, followed by a
cursory examination of the ERA method, the basics of time-domain least squares methods, and
finally a brief comparison of a number of methods in light of the problem of on-line monitoring of
slowly time-varying structural systems.

4.1 H_-BASED SYSTEM IDENTIFICATION

Identification algorithms based on H,, methods typically provide the bounds on plant uncer-
tainty required for H,, robust control design. Most of these methods are rather similar; a typical
derivation and two examples will be given below.

Structural System Identification Methods 20

One dissimilar algorithm that deserves mention, is the Noise Perturbed Full State Info
(NPSFI) algorithm (Didinsky, Pan, and Basar, 1995), which uses the cost-to-come method,
developed to solve nonlinear H,, optimal control and filtering problems, to identify uncertain
plants that are linear in the unknown parameters but nonlinear otherwise. This algorithm,
however, requires at least full state information (and in some cases full state derivative informa-
tion), which effectively disqualifies its usefulness here since full state information is not generally
available in on-line monitoring.

4.1.1 Summary of Previous Work

Many developments in the area of robust system identification have occurred over the past
decade, highlighted by a Special Issue of IEEE Transactions on Automatic Control on System
Identification for Robust Control Design (Kosut, Goodwin, and Polis, 1992). The general goal of
this work has been to identify a system in the presence of noise and unknown plant dynamics
using time- or frequency-response data of the system. Obviously, one desires that the error
between the actual system and the identified system goes to zero in some sense. The recent work
can generally be divided into two classifications: systems with (i) stochastic noise (e.g., white
noise or filtered white noise), and (i7) deterministic noise with a bounded infinity-norm and
unmodeled plant dynamics. Examples of the former approach can be found in Ljung (1987,
1995). Several recent papers (e.g., Bai and Andersland, 1994; Partington and Mikild, 1995a),
including some in a special issue of Automatica on “Trends in System Identification” (S6derstrom
and Astrom, 1995), have analyzed stochastic least-squares identification with worst-case identifi-
cation techniques and have shown that they are by no means mutually exclusive.

One of the earliest references to the bounded deterministic approach is by Zames (1979), who
used the theory of metric complexity to study issues related to the complexity of identification.
The formulation by Helmicki, Jacobson, and Nett (1989, 1990a, 1990b, 1991c, 1991a, 1991b,
1992), however, provided the concept of robustly convergent identification that is the real founda-
tion for most of the current work in H,,.-based system identification. Essentially, they developed a
theory for the robust identification of a system in discrete-time based upon a finite number of
frequency response measurements (that may be corrupted by noise); the resulting system approxi-
mation converges in the H,_, sense to the real system as the noise and the number of measurements
tend to zero and infinity, respectively.

The algorithms of Helmicki, et al. fall into the categories of linear and nonlinear. The linear
algorithms are less complex (and therefore less computationally intensive), but require tuning to
certain a priori information about the unknown system (the convergence properties may fail if the
a priori knowledge happens to be wrong). Untuned linear algorithms have been developed (e.g.,
Gu and Khargonekar, 1992a, 1992b), but they are not robustly convergent — in fact, Partington
(1991, 1992) showed that no robustly convergent, untuned, linear algorithms exist. Linear H,,
identification methods can be made robustly convergent in the presence of noise by requiring a
priori information; for example, Bai and Raman (1994) do so by incorporating a projection
operator based on an assumed a priori knowledge of an exponential decay bound on the
magnitude of the system pulse response (i.e., |h(k)| £ Mp* for k =2 0). The utility of a priori prob-
abilistic information has also been studied (Jacobson and Tadmor, 1993).

Gu and Khargonekar (1992a, 1992b), and Partington (1992), building upon earlier work, have
developed some rapidly convergent nonlinear algorithms. Many of these algorithms that were
originally developed for discrete-time systems have been extended to continuous-time (Akgay,

Structural System Identification Methods 21

Gu, and Khargonekar, 1993; Chen, Gu, and Nett, 1994; Helmicki, Jacobson, and Nett, 1990b,
1992; Mikild, 1991a).

The relationship of these algorithms to the finite-dimensional approximation of infinite-
dimensional systems was investigated (Gu, Khargonekar, and Lee, 1989), as has adaptive system
identification based upon frequency response for various systems (e.g., Parker and Bitmead,
1987a, 1987D).

Identification in /;, while not examined in this study, has been done, notably in several papers
by Makili (1991b, 1992) and Partington and Miikild (1995b). This may be worth additional study
at some point, but it is expected that it will demonstrate many of the same advantages and disad-
vantages in the context of on-line monitoring of (slowly) time-varying systems as the H_.-based
identification examined herein.

4.1.2 The H_-based Identification Algorithms

Gu and Khargonekar summarized the H..-based system identification algorithms in two
papers (1992a, 1992b). For simplicity, assume that the unknown system to be identified is single-
input single-output (SISO). Further, assume that the unknown system is stable, linear, shift-invari-
ant, and discrete-time, with transfer function H. The necessary information is N points of time-
domain data, h(kT), k = 0,..., N—1 (where T is the sampling time; note that hkT) is
shortened to h(k) for convenience). The time domain data may originate in an inverse discrete
Fourier transform of an N -point set of (noisy) experimental frequency response data in the form of

2in1{, 2ind 2ind .
Ae M =He M+ne M,j=0,..,N-1 (35)

where the noise vector is bounded, |l < €, and where i = ~/~1. The inverse discrete Fourier
transform may be defined by

—2in(N-k)£

N-1 w
bk = 1%2 e e (36)
j=0

The time sequence h(k) is assumed to be periodic both forward and backward in time, such that
hk) = h(k £ mN) for any integer m. (Alternate formulations can accommodate a frequency-
dependent noise bound by using a frequency-dependent weighting function (Helmicki, Jacobson,
and Nett, 1991b) and non-uniform spacing of the frequencies by using an interpolation method
(e.g., Akgay, Gu, and Khargonekar, 1992; Partington, 1993).)

The problem then is to find an identified model F of the system H such that ||H —F‘L is
minimized and such that

lim [H-F]. =0 (37)

e 0
N 00

The algorithms by Helmicki, et al., Gu, Khargonekar, Mikild, and Partington (see references
above) can be divided into two categories: linear and nonlinear. The linear algorithms can be

Structural System Identification Methods 22

divided into those that are tuned to a priori system information and untuned. The nonlinear and
the tuned linear algorithms have been shown to be robustly convergent, but the untuned linear
algorithm has been shown to not be robustly convergent (Partington, 1991, 1992), though its diver-
gence is generally so slow that it is often useful. The untuned linear and the two-stage nonlinear
algorithms will be summarized below.

Untuned Linear Algorithm

The untuned linear algorithm is quite simple. It involves taking a weighted, one-sided z-
transform of the time sequence data

Flnea(@) = Y, wilk, mh(k)z+ (38)

k=0

where w(k, n) is a weighting, or windowing, function. Some of the weighting functions that have
been investigated (Gu and Khargonekar, 1992a) are spline, cosine, triangular, rectangular, trape-
zoidal, and Hamming; these are described by the functions below (where 0 <m<n<M < N) and
are shown graphically in Figure 10.

1, k=0
kn
M 2 cos——, |kl<n
Wotine(ks 1) = (Hsm’%) , 1<|k<n Woosinelks 1) = { i)n+1 :k: . (39)
0, K > n ’ "
_W < 0.54 + 0.46cos*®, |kl <
Wl 1) = { — |k<n Wiamming (Ko 1) = { 54 +046cos—, |kl <n (40)
0, Ik>n 0, [kl > n
1, 0<k<2m
e m<h< 1, |Kl<n
Wtrapezoidal(k’ n) = L n'._ mml’ rgmgzé;—le’g{ Wboxcar(k’ n) - { 0 |k| >n (41)
0, lk—m|2>n

The error for the untuned linear algorithm has been shown to be divergent as n tends toward
infinity. The worst-case identification error (Gu and Khargonekar, 1992b) for a SISO system is
bounded below

inf |H-Fl.> Elogn + A] e-a, (42)

admissible #

where A is a finite constant and {a,} is a sequence that tends to zero as n tends to infinity.
However, logn is unbounded for n — o ; thus, the worst-case error is unbounded. If, however,

Structural System Identification Methods 23

T T T T T
1t s -
- x /A x ~
- x F-BERN x LR
-
- x / \ x S
. e x ’° \ x ° N
x / \ x ~
0.8 o ° b
x / \ x
’
x 7 ° \\ . x o
x] \ x o
/ \
0.6F x se vox e :
- o A
"a:o x ;o \ x °
X M \
v x x
B s © \ o
/ \
- x o x o 4
0.4 , .
x I 5 N o
’ \
x 7 o boxcar N x p
/ - = = triangular A
0.21 x ! ° o trapezoidal (m=5) \ox ° 4
/ -+~ Hamming \
x ! ° ~ - = gpline (M=80) \ x o
A i
- o x cosine \ °
x \X
4] doocooo
1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 15
kin

Figure 10: Windowing functions.

the noise bound & and the required order n are small enough, in practice the results of the linear
algorithm are often quite close to that of the nonlinear algorithm (Gu and Khargonekar, 1992b).

Two-Stage Nonlinear Algorithm

The nonlinear algorithm has two steps. The first is much like the untuned linear algorithm
above, taking a weighted, but now two-sided, z -transform of the time sequence data. Let h,.(k) be
a weighted time sequence, ﬁw(k) = w(n, kh(k) where w(k, n) is a weighting function as in the
linear algorithm. Then the two-sided z -transform is given by

A, = Y wknhkzt = Y hk*. (43)
k=-n

k=-n _

The choice of windowing function has significant effects on the rates of convergence and on
the bound on the worst-case identification error. A trade-off appears to exist between convergence
rate (as n gets larger) and the worst case error due to noise (Gu and Khargonekar, 1992a). For
example, the triangular window has a worst-case error convergence rate on the order of n (Gu and
Khargonekar, 1990); the cosine window goes as order of n?, but at the cost of a larger worst-case
noise error. Similarly, the one-sided boxcar window (i.e., w(k, n) is 1in 0 <k <n and zero else-
where) has exponential convergence but has divergent worst case noise error (order of logn)
(Parker and Bitmead, 1987a; Gu and Khargonekar, 1992a). Noting this, Gu and Khargonekar
(1992a) proposed using a trapezoidal windowing function whose convergence rate is between the
triangular and one-sided boxcar, depending on the choice of the parameter m ; the upper bound on
the worst-case nonlinear identification error for a SISO system with a trapezoidal window is

Structural System Identification Methods 24

inf [H= Bl <M vt g pNonemet g 2 p2m) [M]s (44)
admissible £ l-r n—m
e <€

where r < 1 is an upper bound on the relative stability and M is an upper bound on the steady state
gain of H (Friedman and Khargonekar, 1995b).

The nonlinear algorithm, then, requires finding an F(z) such that ||ﬁw - F‘IL is at its infimum.
H,(z) is a mixed causal/anticausal function (because positive powers of z imply prediction); a
completely causal F is desired. Several theorems will be useful in solving this problem.

Theorem 1: Given a causal IEI(z) , the anticausal E‘(z) that infimizes ||IEI -]E‘",o is given by the
solution to the Nehari problem (e.g., Nehari, 1957; Adamjan, Arov, and Krein, 1971;
Young, 1988; Dahleh and Diaz-Bobillo, 1995) as follows.

If H has state space description

H = A}E , or equivalently, qk+1) = Aq(k)+Bu(k)’ (45)
CD y(k) = Cq(k) + Du(k)

then the controllability and observability grammians, P and Q, respectively, are the
solutions to the Lyapunov equations

APAT+BBT = P and ATQA +CTC = Q. (46)

Let the j th right eigenvector of PQ be denoted by x; with associated eigenvalues o?
(i.e., PQx; = 0%x;), where the indices are ordered such that 6} 20%2... 2 0;.
Let y; be defined by y; = Qx;/0;, so that x; and y; will satisfy

Py, = ox;, Qx; = 0;y;, and QPy, = o?y,. (47)

Then the Schmidt pair, w; and v, associated with g; can be expressed as

w;(k) = CA%x;, k20 v(k) = BT(AT) "6+ Dy k<0
V,(2) = BTy, z+BTATy;22+ BT(AT) 2y, 23 + ...
W;(@) = ij+Cijz-l +CA2sz—2+ V@) = V;(1/2) = BTy,z"! +BTATy 72+ ...

= CA(zI-A)'x; + Cx;

BT (zI - AT)-ly.
(zI-ADy; (48)

Structural System lIdentification Methods 25

Theorem 2:

Theorem 3:

Finally, the solution to the Nehari problem is

inf [A-F. = o A -F@]I V() = o,W,(2). (49)

anticausal ¥

For SIMO systems, the optimal F(z) has a unique solution given by

) = A -0, Vl((z)) (50)

Proof of this theorem is found in Dahleh and Diaz-Bobillo (1995). |

Given an anticausal H_ , the infimal value of "ﬁ_ - E’ ",, over all causal E and the
argument that infimizes it are

1A -£]. = o, [A(2)-E@] V,(1/2) = o, W,(1/2), (51)

anticausal E‘
and for SIMO systems, the infimizing F(z) is given uniquely by

. w,(1/
Bo) = R@-o s, (52

The proof merely requires letting H(l/) = H.(z) and F(l/) = E‘(z) , such
that H is causal and ¥ is anticausal, and applying Theorem 1. |

Given a mixed causal/anticausal H,,, the infimal value of ||ﬁw - F",, over all causal
F and the argument that infimizes it are

inf A, -F. = o, A, -F@1V,@ = 6,W,(/2) (53

causal

The proof is as follows. Let ﬁw(z) = ﬁ+(z)A+ fI_(z), separating ﬁw into its
purely causal and purely anticausal parts, A, and H_, respectively,

H.) = Y bzt = b0 +h(Dz ' +h,2)z2 + ..

0 . (54)
A = Y bzt = h(Dz' +h,(-2)22+ ...
k= ~o0
Further let = - H,. Theorem 2 is applied to find the causal F nearest the anti-

causal H_. But smceH -F=H -F,

Structural System Identification Methods 26

inf [A,-F. = o (0,0 -F@1V,@ = o,W,(1/2), (55

causal

and for SIMO systems, a unique solution exists

W,(1/2)

fz) = H,(2) -0, VD
~1

(56)

where W, and V| are the Schmidt pair given in Theorem 1. [

Theorem 4: The system H for a SIMO problem is such that
(a) the controllability grammian P is the identity matrix,

(b) the observability grammian is given by

Q= ﬁ‘,Az, (57)
r=1

where n, is the number of outputs and A, denotes the Hankel matrix
associated with the anticausal part of the rih pulse response h,, (k) ;
iLe.,

by (-1) hy(=2) = hy,(1-n) hw,(—nf

o (=2) Ry (=3) - hy(-n)
A = . S , (58)

h, (1-n) h, (-n)

h,, (-n)

(c) o? is the largest eigenvalue value of Q,

(d) y, = 0,x,,and

(¢) the system estimate ¥ reduces to the n, equations

Lz22-1 ..z 1]Ax,

(59
I_ZZn-l ..ozl szxl

F(2) =

where A, is a function of the rth pulse response ﬁwr(k) such that its
elements are given by

Structural System [dentification Methods 27

h(j-k), j-k<0

&r . = {
ik 0,

j—k>O.

The character of the state space form of H for a SIMO system is:

C

le (n-1) l 0
I(n—l)><(n—1) 0(n—l))(l
| f,-1) H,-2) f(-n) |

D

I
o

(60)

(61)

Because of this simple structure, the Lyapunov equations can be symbolically
solved. The Lyapunov equation for P is APAT+ BBT = P. The terms on the left-
hand side can be written as:

APAT

BBT =

0l)((n—l) 0

L1]

0(n—l) x 1

APAT+BBT =

I(n—l) x(n-1) o(n—l)xl

0 ‘ le(n—l)

N

P

a

0(n—l) x1

olx (n-1) J

Pt 0G-1yx1 Lim-1yxn-1)
' Prnl | 0 ' 0 tn-1y |
1 % 01x(n—l)
l
0, x| Qm-nxm-n
l 0 s n-ny
=P

(62)

(63)

64)

Structural System Identification Methods 28

Therefore, p;;, = 1, p;; = p;; =0,and pj, = p(;_y 41y forj=2,...,n and
k =2,...,n.S0,result (a) is

1, j=k
Pjx = Oy = { 0, j#k = P =1, (65)

A similar simplification of the other Lyapunov equation, ATQA + CTC = Q,
gives result (b)

{ BT (=), j=nork=n
9 =

di+npk+n t b, (—)h,(-k), otherwise
(66)

= Y Wemhii-d-m = Q=Y A
r=1

m = max(j, k)

Since o7 is the largest eigenvalue of PQ and P is the identity matrix, result (c)
is immediate. Similarly, because P is the identity matrix, (47) simplifies to result (d)
Y1 = 01X,

The final result (e) is found by substituting the definitions of A, B, and C in
(61) into the definition of the Schmidt pair (48) and simplifying

1
0
A R R z 1
W, (1/2) = b (D A2 o hem]l 2 . |x
Do (67)
zn—l Z2 z 1
=[1 z ... z¢7'JAx,
Vi@ =1zt 22 ... zt]y, = ol 22 L 2y
Substituting into (56),
F@ = [H.,Y,@-0,W (1/9]1/Y,@
I:Iw’(z)l_Z‘1 2 ... ozn)x =Ll z ... VAKX,
B I_Z'l T Z"’_]x] (68)
[er(z)l_z" z2 ooz - 1 oz .. z"“_JA,:lx]

Lz z2 ... znlx,

Structural System Identification Methods 29

But the first term in the numerator can be expanded as

o Oz + ... + by, (27!
ho(-mzi-t+ ..+ by, (1)

by (Dz7'+ . +hy, (mz="-2 .
by (~n)

K3
=
S’
L]
N
~
]

h,(1-mz '+

ho© k(1) - b, (1-n)
ho(1) By Q) - h,Q2-n)
T : . TF, R (69)
z:; hon-1) L D) o by om
— <7 ’ : Z
T h,(m) h,(n-1) S R P
z-2n r r zn—l ﬁlw (_n) 0
b, (m) ‘
0 - fz.i,(n—l)
hy, (n)

=lz1 22 ... A+l z ... 2 1A)

Thus the model for the r output can be simplified to

DA =11z L 2 A D X

B = (Lt z2 ... 27 A +|1 z .
' Lzt z2 ... z7]x
7V z72 . 7]AXx
= Ll_z-lzz-z mz Z_,.JJ;I l (70)
Lz2»-' ... z 1]AXx,
T[T . mtl 7 x,

which proves result ().

In summary, to compute the estimate I of the SIMO system H and the estimated bound on

the model error:
1. Construct the Hankel matrices A, from the anticausal part of the weighted pulse

responses

2 —-— . _ <
" ={hwr(l j-k), j+k-1<n an
J* 0, j+k=1>n

Structural System Identification Methods 30

2. Find the largest eigenvalue 07 and the corresponding eigenvector x, of the sum of
the squares of the anticausal Hankel matrices

(Z Aerxl = 07X, (72)
r=1
3. Formthe A, matrices

’ (73)

_ {ﬁwu—kx j=k<0
0, j—k>0

4. Then the estimated model F and the estimated bound on the model error are

L2201 ...z 1]JA,
. 1 Lz2»-1 ... z 1]A,
F(Z) = LZZn-I zn+l Zanl . X, (74)
Lz22-1 ...z 1JA,
A-#. = o (75)

4.1.3 Example I of the H_-based Identification Algorithms

Gu and Khargonekar (1992a, 1992b) give some examples of the untuned linear and nonlinear
algorithms; one such example (Gu and Khargonekar, 1992b), repeated here, is the attempt to
identify the system

3(2+1)

H(7) =
@ 522+2z+1

(76)

with noise bound |n,| < € = 0.1. The noise is generated by 7, = ge'% where 6, is a
uniformly distributed random variable on the interval [0, 27). N is chosen to be 512. A triangu-
lar window is used, with n taking on the values 5, 10, 20, 40, and 80. Both the linear and
nonlinear algorithms were executed using MATLAB® on the UIUC Engineering Workstations.

Figure 11 shows the pulse response of the system with noise and without. The pulse response
of the exact system and the identified models are shown in Fig. 12. Only the lowest-order model
(n = 5) shows significant deviation from the actual system response.

The identified transfer functions are plotted with the original system transfer function in Figs.
13 and 14 (magnitude and phase respectively; frequency is normalized such that the Nyquist
frequency is normalized to 1). It is obvious that the larger the order of the identification (i.e., the
larger the value of n), the closer the approximation is to the original transfer function. The worst-
case error, give in Table 1, seems to suggest that the converse would be true; in all cases examined

Structural System Identification Methods 31

0.7 T T T T T T T L T
0.6 4
0.5 B
0.41

—— Sysiem response
0.3+ E

0.2 A

Pulse Response

0.1 4

I) 1 1 I i

1
0 5 10 15 20 25 30 35 40 45 50
time k

S
w

Figure 11: Response of system with and without noise.

0.7 T T T T T T T T T

0.61 4
———EXACT

Linear —
Nonlinear

n= S -
=10

Pulse Response

_0'3 1 i i 1 1 1 1 1 4
0 2 4 6 8 10 12 14 16 18 20

time k

Figure 12: Pulse response of original system and identified models.

Structural System Identification Methods 32

1.5 T T T T T T T

—n———— EXACT

— Linear
—-—— Nonlinear

n= 5

Transfer Function Magnitude

0 1 1 1 L 1 L e i
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
normalized frequency wT/n

Figure 13: Magnitude of original and identified transfer functions.

150 b

Transfer Function Phase [degrees)

0 0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1
normalized frequency wl/nx

Figure 14: Phase of original and identified transfer functions.

Structural System Identification Methods 33

model order n worst-case error 0,
5 0.0079059
10 0.011599
20 0.015108
40 0.019927
80 0.029021

Table 1: Worst-case error for the nonlinear identified models of Example L.

for this study, however, the actual error never went up with increasing model order (unless
numerical difficulties in the eigenproblem corrupted the solution).

Due to the high order of the approximations, only the lowest-order identified polynomial
models will be given here (the polynomial coefficients are accurate to 4 significant digits):

0.5961z* - 0.1951z3 + 0.344922 — 0.07495z — 0.009165

Flincar(z) = 4
n=295 Z
" 0.59625 — 0.134925 — 0.0003662% + 0.0650823 — 0.20532z2 + 0.04018z + 0.005021
Fnonlincar(z) = pr
n=
[0.59612° — 0.219528 + 0.459927 — 0.131226 — 0027525
P +0.02412% - 0.0044923 + 0.000368922 + 0.00021z + 0.0003871] amn
linear (Z) - 9
n=10 Z
[0.5959z7 — 0.1136216 + 0.047112!5 — 0.009078z'4 — 0.2901z!3 + 0.0837212
—0.6885z!" + 0.072752'0 — 0.062152° + 0.0149128 + 0.02792z7 - 0.01151 26
£ @ = — 0.0003642z5 + 0.001117z% — 0.000215823 — 0.0000421722 + 0.0000193]
nonlinear' -

n=10 [z!7 +0.170426 - 0.63212!5 - 0.15682!4 + 0.02693 23
+0.09749212 - 0.1631z!" + 0.01218210 + 0.049852° |

One important observation from the transfer functions is that the highest order models (i.e.,
those with n = 80) are oscillating, in both magnitude and phase, unlike the lower order models,
though it is closer to the exact transfer function than those lower order models; the higher-order
model may be trying to model the noise. Another observation is that the nonlinear algorithm does
not appear to do much better than the linear algorithm. In fact, the difference is only noticeable in
Figures 15 and 16, that show the transfer function error magnitude, iL.e., |e(z)| = IH(z) - F‘(z)| .
(Figure 16 is quite similar to that shown by Gu and Khargonekar (1992b); any difference is due to
the fact that the noise is random.)

The error of the pulse response of the identified models is shown in Fig. 17; the peak response
error is approximately O(1/n). The difference between the linear and nonlinear results are barely
apparent here. Part of the reason is that the pulse response dies out so quickly (and indeed is zero

Structural System Identification Methods 34

0.4 T T T T T

o

w

1)
T

— Linear
Nonlinear

o
w
T

n=35 4
....... s

= = n=20
0.25¢ R .

0.15

Magnitude of Transfer Function Error
o
»

o
=

0.3 0.4 0.5 0.6

normalized frequency wT/x

Figure 15: Magnitude of identified transfer function error.

0.12 T T T T T T T T T

o
8

Magnitude of Transfer Function Error
o =)
o o
& &>

0.02H

05
normalized frequency wl’n

Figure 16: Magnitude of identified transfer function error.

Structural System Identification Methods 35

0.25 T T T T T T T T T
0.2 4
% —_— Unqr
§ 0.15F Nonlinear 4
§ = =3
2 e =10
Q - - n=20
g - = —n=40
g‘ ' n=80
& 01 1
4
Do .
005F I\ " 1
N A
A
.4):,’/ N \ /\
o . :;//‘_‘: e e
0 2 4 6 8 10 12 14 16 18 20
time k
Figure 17: Absolute error in pulse responses of identified models.
0.7 T T T T T T l T T
——— Linear
I Nonlinear
0.6]
* n=5
"""" n=10
. - = n=20
g .
m » [
§ 0.4+ » 4
g :
& ’ .
go3r . : 1
2 . i
< s
[N .
0.2y . ! . Lo e

Figure 18: Error in response to Gaussian white noise input, relative to the RMS of the exact response.

Structural System Identification Methods 36

o
IS
4

o
g

n=5
,,,,,,, =10
- = n=20
= = —n=40
~—— n=80

ot
w
T

o

[

)
T

Relative Response Difference
2 o
o [N

[=]
pry
T

005, / \

Figure 19: Relative difference between linear and nonlinear responses to Gaussian white noise input.

for linear approximations after time n — 1). To examine a longer response, the exact system and
the identified models are subjected to a Gaussian white noise input. The response error, relative to
the root mean-square (RMS) of the exact response, is shown in Fig. 18. Again, the difference
between the linear and nonlinear models are only apparent for the higher order models. This can
be more easily seen in Fig. 19, which shows the relative response difference between correspond-
ing linear and nonlinear models.

4.1.4 Example II of the H_ -based Identification Algorithms

To evaluate the utility of H_-based identification for structural system identification, an addi-
tional example, using a structurally-based system, is beneficial. A six degree of freedom system,
like that in Fig. 4, with all masses, damping coefficients, and spring stiffnesses the same, is
simulated in discrete time; the system input is the force on the first mass, and the outputs are the
displacements of the six masses.

The noise in the pulse responses is generated in the same manner as in the previous example,
with the noise magnitude from each response being a constant € = 0.1 magnitude in the
frequency domain but of random phase. One of the six pulse responses, that of the third mass, is
given in Fig. 20 with and without the noise. This system has, of course, six modes, but the
damping varies significantly from mode to mode; the lowest frequency has 1.2% damping and the
highest has 9.7%. Thus, the low frequencies dominate the long-term pulse response and the higher
frequencies are only seen in the first portion of the response. This dominance can also be seen in
the magnitude of the transfer functions of the exact system and to modal coordinates in Fig. 21.
Since the noise has a flat frequency content, one would expect the identification of higher modes
to be more error prone due to a lower signal-to-noise ratio.

Structural System Identification Methods 37

0.4

0.3

0.2

0.1

A

200

Figure 20:

1000 1200 1400 1600 1800 2000
time k

400 600 800

Pulse response of mass #3 of six degree of freedom system.

e
[=]
[-]

-
°.

Transfer Function Magnitude

(=]

-
(=]

N
o-

Modal Transfer Function Magnitude

Figure 21: Transfer functions of the exact system (top) and to modal coordinates (bottom).

0.2

0.3 0.4
normalized frequency wT/x

Structural System Identification Methods

38

model order n worst-case error G,
24 [0020505 |
60 0.035888
120 0.056611
240 0.10154
480 0.18838

Table 2: Worst-case error for the nonlinear identified models of Example I1.

Both linear and nonlinear algorithms are used to identify this system. Their results are
similar, so only the nonlinear results will be given here and the differences noted where appropri-
ate. The worst-case error found by the nonlinear algorithms, shown in Table 1, increases with
model order, as seen in the previous example. The actual error, however, was seen to be non-
increasing with higher model order.

The magnitude and phase of the exact and nonlinear identified transfer functions to the first
output are shown in Figs. 22 and 23. Decent estimates are found with a model order of n = 120;
the strong peak of the first mode, required to accurately determine its damping, is not closely
approximated unless an even higher order is used. The error at magnitude peaks and valleys is
even more obvious in the transfer function to the third output in Fig. 24.

The error in the transfer functions demonstrates that the identified models have difficulty in
obtaining accuracy with error magnitude less than the noise magnitude €. Figure 25 shows the
error magnitude of the nonlinear identified models for the first output. The peak error is seen to be
non-increasing as model order increases, but the error is rarely much below the noise magnitude of
0.1.

As noted above, the difference between the linear and nonlinear identified models would be
hard to see in a graph of the transfer function magnitudes. They do differ, but only for high model
orders is the magnitude of that difference significant relative to the error in the transfer functions.
Figure 26 shows the magnitude of the difference between the linear and nonlinear identified
transfer functions for the third output. Only the difference for n 2 240 is not small in comparison
with the noise magnitude and the magnitude of the error of the identified models.

The H,-based identification does function satisfactorily for this structural identification
problem.

4.1.5 Evaluation of the H_-based Identification Algorithms

The results of the H_-based identification are generally good, as was seen in the above
examples. Application to real-world systems has also demonstrated the usefulness of H_-based
identification in general (e.g., Gu and Khargonekar, 1993; Friedman and Khargonekar, 1995a,
1995b, which identified the ATB 1000 testbed at the U.S. Army Automation and Robotics Lab and
the Advanced Reconfigurable Control (ARC) testbed, a 6-bay truss structure, at the Jet Propulsion
Lab; Friedman, 1996).

Structural System Identification Methods 39

— EXACT

10

-
o
(-3

Transfer Function Magnitude

-
ou

1 0-2) PR L 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
normalized frequency o/

Figure 22: Magnitude of transfer function #1 of the exact system and the nonlinear identified models.

Transfer Function Phase [degrees]

-200 1 1 L L 1
0 0.1 0.2 0.3 0.4 0.5 0.6

normalized fréqucncy wl/n

Figure 23: Phase of transfer function #1 of the exact system and the nonlinear identified models.

Structural System Identification Methods 40

10'
3
£
L3
< 10
(=]
g
&
i
=]
10"
10_2 1 1 1 1 A1
0 0.1 0.2 0.3 0.4 0.5 0.6
normalized frequency oT/n

Figure 24: Magnitude of transfer function #3 of the exact system and the nonlinear identified models.

10' | E
—n= 24
| A A n= 60 1
b -~ =120
A - ~ - n=240
10° 1
3
£
o
Z 10"
E
m
[-]
(=]
g
-2
S10
:
= 3)
10 1
104} 1
L 1 1 1 1

(o] 0.1 0.2 0.3 04 0.5 0.6
normalized frequency oI/

Figure 25: Magnitude of transfer function #1 error of the nonlinear identified models.

Structural System Identification Methods 41

" ey ol o 2V

[
Lo
N
-
L

-
o.
T

\
f

Transfer Function Difference Magnitude

-
°-
o

0 0.1 02 0.3 04 0.5 0.6
normalized frequency wl/n

Figure 26: Magnitude of difference between linear and
nonlinear identified transfer functions for output #3.

There are a number of practical concerns about this type of identification. First, the nonlinear
algorithm requires the solution of an n X n eigenvalue problem. For large systems, this can be
very computationally intensive and may require special care for accurate results. Second, the
resulting models generally require a significant reduction in order. Identified models are typically
20-200 times the order of the “true” system in order to get accurate results. While order reduction
is not difficult to do, it carries its own set of problems, especially for large systems. Third, a
modest amount of expertise is required to properly use the H,, identification; for example, it has
been seen (Friedman and Khargonekar, 1995a) that the choice of windowing function can be
critical to the algorithm’s performance. Finally, the method requires pulse response data as
opposed to directly-measured input and output data; this is not a difficulty for baseline structural
testing, especially since high-speed implementation of inverse discrete Fourier transform is often
available, but it limits the usefulness of the method in on-line situations where speed is critical.

The conclusion, then, is that while the H,_ identification methods lend themselves to use in
some applications, on-line monitoring is not one of them for the methods studied herein.

4.2 EIGENSYSTEM REALIZATION ALGORITHM

The Eigensystem Realization Algorithm (ERA) (Juang and Pappa, 1985) uses the system
Markov parameters (pulse response) to compute the eigenvalues and eigenvectors of a system,
which can then be used to find natural frequencies, damping ratios, and modeshapes. The system
is assumed to be discrete-time, linear, and time-invariant of the form

Structural System Identification Methods 42

qk + 1) = Aqk) + Bu(k)

(78)
y(k) = Cq(k)
with n, inputs and n, outputs. The pulse response (Markov parameters), given by
Y(k) = CA*-1B, is measured, perhaps directly in the time-domain by introducing impulses into
system inputs, or indirectly from the inverse discrete Fourier transform of a transfer function
matrix. A generalized Hankel matrix of the Markov parameters is formed

Y(k) Yk+1) - Yk+s)

Yk+1) Yk+2) - Yk+s+1)

H) = (79)

Y(k.+ r) Y(k+.r+ 1) Yk +.r+s)

where r and s are arbitrary integers, but should both be at least twice the assumed order of the
system for best results.

The generalized Hankel matrix for k = O is decomposed via a singular value decomposition:
H(0) = PDQT. In the absence of noise, the order of the system is immediately apparent because
the first n singular values are non-zero while the rest are identically zero. With noise, one must
judge where the cut-off is between real and noise-induced non-zero singular values — this
threshold is dependent on the estimated measurement errors and computer precision. The decom-
posed matrices, P, D, and Q, are truncated in order to ignore the zero (or nearly zero) singular
values; the first n rows and n columns of D are retained, as are the first n columns of both P and

Q.

Then, the minimum-order realization is

D-12PTH(k)QD-!/2

A
B = D12QT[I 0, x;n 17 (80)

]PD!/2

llX'l

(@
]

[1

n . xn nxm
¥ ¥

and the eigenvalues 2, and elgenvectors ¥, can be found from A\|t, = 2,§¥,. The continuous-
time poles are then givenby §, = (InZ % 2mn/—1) /kT, where T is the sampling period and m
is an integer; modeshapes are given by C‘Q’ k is generally chosen to be 1 for simplicity.

The modal amplitude coherence ¥,, a measure of whether a mode is judged to be true or
noise-induced (7, is always in [0,1]; nearer zero signifies a noise-induced mode, nearer one
signifies a true mode), can be computed from

_ _lelr
22| e,

72 (81)

Structural System Identification Methods 43

where ()* denotes complex conjugate transpose and the column vectors g,, b,, and g, are
defined by

(g, & - 8] =¥'DQT
[b, b, ... b]* =¥'D2QT[I, . 0,,.,]17 (82)
g/ =|b; bz bj22 ... b2

The ERA method, like the H__-based identification, certainly is useful for many applications.
It is noted for numerical robustness due to the use of the singular value decomposition, though
care is required that sufficient data is used to form the Hankel matrix for correct estimates of the
system characteristics. The use of ERA and its faster variants (e.g., Peterson, 1995) for on-line
monitoring, however, is limited since it can be somewhat computationally intensive and may not
be sufficiently fast to meet on-line requirements.

4.3 PARAMETRIC TIME-DOMAIN METHODS

The methods available to do parametric identification in the time domain are probably some
of the most-widely classes of system identification. Certainly, one of the reasons for this is their
ease of use in general; and perhaps just as importantly, access to these routines in software
packages, MATLAB® for example, has facilitated use by practitioners. Furthermore, time domain
methods can, in general, better distinguish between modes whose frequencies are closely spaced
than can frequency domain methods (Inman, 1989).

Most of these methods (Ljung, 1987) choose a set of parameters by using the prediction error,
the difference between what the model predicts the output should be at some instant of time and
what is actually measured at that time; i.e.,

&k, 8) = y(k)-§(, 6) (83)

where @ is the parameter vector, y(k) is the measured output, and §(%, 0) is the output predicted
by the model. A cost function based on the prediction error is then minimized to find the best
choice of parameters 0,(k) based on all data up to, and including, time k

k
0.(k) = arg m‘i)n Y, 1U, k, L)€k, 6), 8) (84)

j=1

where L(z) is a matrix of stable linear filters and Ik, kg, Egpereq 8 1S @ scalar-valued function
(typically positive). L is essentially a frequency weighting of the error; for example, it can be
used to prefilter the error to remove high-frequency disturbances that are not essential to the
modelling or low-frequency drift or bias effects. If the predictor is linear, then using the prefilter
is identical to prefiltering the input and output with the same linear filter before using the predictor.
Thus, it will be assumed in the following that no prefilter is used; i.e., L(z) =1.

Now, the choice of the function ! determines the solution. Several choices of these functions
result in the special cases that follow.

Structural System Identification Methods 44

The predictor can, of course, be any function of past inputs and outputs and the parameter
vector 0. A convenient predictor, however, is a linear regression model

§(k, 0) = ®T(k)0 + p(k) (85)
where ®(k) is the regression matrix and p(k) is a known function of time (and perhaps past input

and output data); p(k) will be assumed zero for simplicity, but its exclusion leads to no loss of
generality. The predictor and the prediction error, then, are

§(k, 0) = ®T(k)6

ek, 0) = y(k) - ®T(k)0 (86)

The form of the regression is dependent on the assumed model of the system. Two forms that
are very convenient for linear, (locally) time-invariant systems are the Auto Regressive with
eXogenous inputs (ARX) and Auto Regressive Moving Average with eXogenous inputs
(ARMAX) models. Both assume a linear difference equation between system inputs and outputs.
The former assumes that the noise is simply an uncorrelated white noise on the sensor outputs

yEO +Ayk-1D+... +Anay(k—na) = Buk-1)+... +Bnbu(k—nb) + e(k) (87)

while ARMAX assumes a more complex noise mode, replacing the e(k) term with

e(k) + Cie(k—1)+ ...+ C, e(k—n) (88)

which allows for the sensor noise to be filtered and for white process noise. Other forms are
sometimes useful, such as the Box-Jenkins and Output-Error models (Ljung, 1987).

The regression matrices for the ARX and ARMAX models are, respectively,

D oxb) = [-yk-1) -yk-2) ... -y(k-n,) uk-1) uk-2) ... uk-n,)]T (89)
D@, ovaxh) = [P (k) ek-1,0) €k-2,0) ... ek-n_,0)]T (90)

4.3.1 Time-Domain Least-Squares Methods

The least-squares methods construct the cost function by letting ! be

1
2kﬁnal

1k, Knap €aerets ©) = 57— ET(k, OYW-I(k, kg, B)ELK, B) o1

where W(k, k¢, 0) is a positive, symmetric, semidefinite weighting matrix that may depend on
time and (less frequently) the parameterization. This leads to a relatively simple solution for the
parameters 0,

Structural System Identification Methods 45

k -1 k
0L5(k) = [i S O()W-1 &, G)d’TU‘)] 13 SGHWG, k, Oy() (92)

j=1 j=1

This is what is sometimes termed weighted least-squares identification. Of course W(k, kg .., 0)
may be the identity matrix in which case there is no weighting.

For multi-output systems, a slightly different parameterization may be possible, where the
prediction regression is

§(k, 8) = OT¢(k) (93)

where © is a p X n, matrix. The weighted least-squares solution to © is then

k -1 k
er k) = [}C Y, 6WIG k, 9)¢TU)} LY. 0WG, k, 8)YT0) 9%

j=1 j=1

which requires the inverse of a p X p matrix (the regression vector ¢ is p X 1), much quicker than
inverting the pn, X pn, matrix in (92) (where the regression matrix @ is pn,Xn,).
4.3.2 Recursive Least-Squares Methods

A general recursive identification algorithm requires that it be possible to cast the parameter
estimation in the form

X(k) = Hk, X(k - 1), y(k), u(k))

A (95)
O(k) = h(X(k))

where H and h are known functions that can be computed in a known amount of time (typically,
less than one sampling period) and X is a matrix of fixed size that represents some accumulated
information or knowledge. Since the amount of information in the newest measurements is small
compared to the accumulated information, a more typical form is

8(k) = B(k - 1) + MbhX(k - 1), y(k), u(k))
X(k) = X(k—- 1)+ p()H(X(k - 1), y(k), u(k))

(96)

where ¥ and u are small numbers that reflect the information content of the latest measurements.
For many methods of interest, h has a simple form such that

0k) = Bk - 1) + K(k) [y(k) - §(k, 9)] (97)

A weighted least-squares algorithm, where the weighting W(k, kg, 0) is of the form

Structural System Identification Methods 46

W"(k , kﬁnap e) = A’(k)w_l(k - 1’ kﬁnal’ e)

Wik inats Kfinar 8) = 1 -
or, equivalently,
-
W-(k, ks 1, 0) = I ,11 | 0 (99)
can be cast in the recursive relationship
8(k) = 8(k - 1) + R-I(K)D(K) [y(k) - ®T(k)B(k - 1)] (100)

R(k) = AMk)R(k - 1) + Dk)DPT(k)

Another convenient form is found by letting P(k) = R-!(k), applying the matrix inversion lemma
to the equation for R(k), and simplifying

8(k) = 8k - 1) + Pk — LK) [y(k) - DT(k)B(k — 1)]

L(k) = ®k) [AR] + PT(k)P(k - 1)P(k)] ! (101)
Pk) = M——l—k)P(k— 1) {I-LEOTE)PK- 1)}

This form is especially convenient for single output systems since the matrix to be inverted in
(101) is a scalar, whereas in (100) itis pX p.

This variant is often called the forgetting factor method since it facilitates weighting past
information exponentially less as time goes on, thus allowing identification of slowly time-varying
systems. A constant forgetting factor A = A(k) is often used, making the weight

W-itk, kg, 8) = A7 I (102)

Several other recursive least-squares variants are available. One, which assumes that the
change in the true parameters 6,(k) follows a random walk, is given by

0,(k) = By(k — 1) + white noise (103)

A Kalman filter formulation can then be used to minimize the error in the estimated parameters.
Two additional variants are the unnormalized and normalized gradient approaches, which set
K(k) in (97) to

Ty(k), i ;
K(k) = { y(k) unnormalized gradient (104

Yy(k)|lw(k)|-2, normalized gradient

Structural System Identification Methods 47

where Y(f) is an estimate of the gradient of §(z, 8) with respect to ©.

One significant concern is the computational complexity of the recursive algorithms, which
must be low enough to allow on-line processing of the data. The complexity of the recursive least-
squares methods goes as p? where the parameter vector 0 is p X 1. For large systems, this may
seem prohibitive, but several faster modified recursive least-squares algorithms exist (Ljung and
Soderstrom, 1983, especially Appendix 6; Ljung, 1987) whose complexity is closer to O(p), for
example fast transversal filters (Cioffi & Kailath, 1984) and least-squares lattice filters (Griffiths,
1977; Makhoul, 1977; Lee et al., 1981).

It should be noted that MATLAB® does include a number of recursive least-square routines,
including all four variants mentioned above. Both ARX and ARMAX system models are
included, along with Box-Jenkins, Output-Error, and a general Prediction-Error model. Its imple-
mentation, however, is limited to single-input, single-output (SISO) systems for many of the
routines, and to multi-input, single-output (MISO) for others. None of the recursive least-squares
algorithms will handle the general multi-input, multi-output (MIMO) systems; perhaps MIMO
systems were not included due to the matrix inversion in (100) or (101) if the output is not scalar.
One could argue that a model for each output of a system could be estimated and then combined.
Generally, however, the dynamics for each output are linked. With all outputs handled at the same
time, one would expect better results due to the additional information available to the estimator.

4.3.3 Instrumental Variable Methods

An alternate formulation can be based on requiring that the noise be uncorrelated with past
samples. This may be formulated by requiring

k
13 V() [y() - ®70)8] = 0 (105)
j=1

where V(j) are the instrumental variables that should be correlated with the regression matrix but
uncorrelated with the noise

E[V(k)®T(k)] is nonsingular

(106)
E[V(kv(k)] =0
where the measured data is assumed to be given by
y(k) = ®T(k)0 + v(k) (107)

Appropriate instrumental variables for ARX and ARMAX models can be found. One method
of constructing the instrumental variables with an ARX model is to first use a least-squares search
and use the resulting estimation of A}-S and B}-S to construct the instrumental variables

Vk) = [-x(tk-1) —x(k-2) ... —x(k-n)) utk-1) wk-2) ... utk—ny)]7 (108)

where x is the input filtered through the ARX model

Structural System Identification Methods 48

[L+ALSz1+ .+ ALSZ™]x(K) = [BFSz- + ... + BESz ™ uk) (109)

Instrumental variable methods can be done recursively. For details on this, on other choices
of the instrumental variables, and a full derivation, see Ljung (1987) and the references therein.

4.4 COMPARISON OF VARIOUS SYSTEM IDENTIFICATION METHODS

A number of the aforementioned system identification methods have been evaluated for their
usefulness in on-line monitoring of structural systems. Table 3 rates these methods according to
(i) the expertise required to use the method well, (ii) numerical convergence properties of the
method, (iii) the potential for use on-line, (iv) where the initial guess must be, (v) the reliability of
the results, and (vi) what knowledge is required a priori. (Part of this chart is borrowed from
Shinozuka and Ghanem (1995).)

The method that best appears to meet the criteria for on-line monitoring of slowly time-
varying systems is a recursive least-squares method that uses the “forgetting factor” variant (which
weights past measurements exponentially less). This method is easy to use, produces reliable
results, and has high on-line potential. Furthermore, it is able to handle time-varying systems well

due to the exponential weight.

ID Method Required yal;”é;:: On-line Initial | Reliability a priori
Expertise Potential | Guess | of Results | knowledge
vergence
— ———————— ——————
ERA medium good low anywhere | good pulse resp.
H,, substantial| usually low anywhere | medium | pulse resp.
Least Squares . .
(ARX, ARMAX, etc.) minimal | always low anywhere good | I/O hist; order
Recursive Least Squares - . . .
(RARX, etc.) minimal | always high anywhere | medium | I/O hist; order
(RARX, etc.) with exponential window mxmmal 1 Qways high - | anywhere | = good - }1/O hist; order
Maximum Likelihood substantial | sometimes low close good | I/O hist; order
Recursive Instrumental variable medium | always high anywhere | medium |I/O hist; order
Extended Kalman Filter substantial | sometimes low close good varies
Subspace Methods (N4SID) minimal | always low anywhere | good 1/O hist.

Table 3: Evaluation and comparison of some system identification methods

Structural System Identification Methods

49

5.0 TWO-STAGE ADAPTIVE MONITORING

Given that available on-line computer power is constant, the goal of accurate identification of
structural parameters and/or modal responses is generally in direct contradiction with attempting
to update such information rapidly to track a time-varying system. A two-stage adaptive monitor-
ing scheme can meet the sometimes conflicting needs of on-line monitoring.

5.1 BASIC DESIGN OF A TWO-STAGE ALGORITHM

Two loops characterize a two-stage algorithm. The outer loop, which is performed on-line but
not necessarily in real time, is a system identification loop that updates, as often as possible,
estimates of the system parameters and a Kalman filter to monitor the system. The real-time inner
loop uses the most recently available Kalman filter output to monitor modal response; this modal
response may be used to watch for pathological behavior of certain modes, or it may be used as the
input to a simple single degree of freedom identification algorithm to update frequency and
damping more rapidly than the outer loop can. Figure 27 shows a block diagram of a two-stage
algorithm. Similar multi-stage algorithms (e.g., Chen et al., 1992) for the purpose of adaptive
control have been studied.

Note that the method used to identify the system is not necessarily defined. It may be a
standard algorithm, such as a recursive least-squares time-domain method, or something more
esoteric.

Baseline Test: -Compute high-precision system model,
o - including an initial Kalman filter and
~ aninitial spatial modal filter . ‘

Use Modal KF
to produce
modal response

R ,
| Compute new modal - |
Kalman filter parameters| -

‘on-line

Figure 27: Block diagram of a two-stage adaptive monitoring algorithm.

Two-Stage Adaptive Monitoring 50

In order to monitor modal response, a modal Kalman filter can be used. To do so, the identi-
fied model must be put into a state-space form. A similarity transformation is used to convert the
identified system to modal state-space (block diagonal form). Assume the identified system is of
order n with state-space description (A, B, C, D) in continuous- or discrete-time

x(k+1) = A x(k) + Blu(k) X(1) = & x(0) +B°u(y)

or 110
ytk) = Cx(k) + D u(k) y(® = C°x(9) + D°u(?) (HO
Let A, and @ be the right eigenvalues and eigenmatrix of A , arranged such that
D= (¢ 0|6 & |¥,... W], n=2p+g a1
A= (A Ay A]
Then the similarity transformation to convert to modal state-space is
- -
~-aj 1 0
-a, 1
A, continuous
T=90 -ay 1 4; = %lnli, discrete (112)
-ap 1
L 0 Ioxq

where the a; depend on whether the model is in continuous or discrete time. Replacing x with
Tx and premultiplying the state equations by T-! will give

x(k+ 1) = Al x(k) + B'u(k) x(t) = A x(t) + B°u(®)

d 4 or . . (113)
y(k) = C™x(k) + D u(k) y(@® = C'x(®) + D°u(®

which is a system whose states are modal displacements and velocities

A = [Ap:' X = ‘H;’ (114)

Two-Stage Adaptive Monitoring 51

B=T'B C=CT (115)

where the p 2 x 2 blocks A, in A are functions of modal frequency @, and damping ratio .

; (o 1 |sinw, T
=0 Dl o A= eAT o b 2 +lcosw, T| (116)
-2 -28 o, —0? -{o| B4 ,

r

where @; = w,,/l - {E The modal state-space description (A, B, C, D) can then be used to
easily compute natural frequencies and damping ratios. It can further be used to formulate a time-
varying Kalman filter to efficiently estimate modal responses.

A time-varying Kalman filter (Chui and Chen, 1987) for a system with discrete-time state-
space description

x(k + 1) = Ak)x(k) + B(k)u(k) + T(k)E(k)

(117)
y(k) = Ck)x(k) + D(k)u(k) + n(k)
where zero E(k) and (k) are zero-mean Gaussian white noise vectors with covariance
&k Q) | Sy Q) 20
E| sn@ ;L&) | nTR) 1| = |ST(k) Rk) R(k)>0 (118)
x(0) 0 0 Sk)=0
L ’ 4
and with initial state conditions x(0), is given by the initial conditions
P0) = E[x(0)x™(0)] %(0) = E[x(0)] (119)

and the recursive filter equations (terms in gray may be eliminated if S(A)=0)

Kik)
P(x)

T(HSKR-1(K)
[Ak-1) - Kk - DHChk - D] P(k— D[AK-1) - KKk - DCk - 1] T
+ Tk-DQKk-1DITk-1) - Kk - DRk - DKL -1
G(k) = PR)CT(k) [C(R)PHR)CT(k) + R(k)]
Pk = [1-Gk)CK)] Pk (120)
x(k) = Akk-Dxk-1)+ Bk - Duk-1)
+ Kk = D[yth=1)=Dik-utk -)= Clk—)Xk - D]
f(k) = [1- GKk)C(k)] x(k) — GR)Dkuck) + Gk yk)
§(k) = Ck)k(k) + D(k)u(k)

Two-Stage Adaptive Monitoring 52

5.2 EXAMPLE OF A TWO-STAGE ALGORITHM

To demonstrate the usefulness of a two-stage algorithm, it will be applied to several systems;
first to a single degree of freedom system to demonstrate several important observations on the
effects of various algorithmic parameters, and then to two multi-degree of freedom systems with
two and six degrees of freedom, respectively. All three base systems are like the six degree of
freedom system shown in Fig. 4, and have masses, spring stiffnesses, and damping coefficients

m =1, k. =1,and ¢, = 0.1, (121)

respectively; the natural frequencies, then, are clustered around 1 rad/sec. (This is, of course, quite
a bit lower than most real-world structural systems of interest here, but since it is a linear system,
the time- and frequency-ranges are easily scaled.) These systems will then be modified in
piecewise time-invariant and continuously time-varying manners to demonstrate the ability to
track to such changing systems.

An ARX system model is assumed for several reasons. First, it is relatively simple and can be
used to clarify certain issues. Second, it allows the use of a recursive algorithm RARX. Third, the
identification can be implemented easily with MATLAB® via the rarx function. Fourth, the
extension to an ARMAX model, which includes a more realistic noise model, is direct. The for-
getting factor variant will be used since the real system will be time varying in some of the
examples.

Note that all of the examples were executed with Gaussian white noise inputs (of varying
magnitudes). Thus, results will vary with realizations of the noise.

5.2.1 Effect of Algorithm Parameters on a SDOF System

Before applying the recursive least-squares ARX algorithm, it is useful to see the effect of the
forgetting factor on the identification. Figure 28 shows how much weight is given to past data at
time ¢+ = 750 seconds. Forgetting factors A in the range of [0.95,0.995] were examined in this
study. The proper choice of the forgetting factor is dependent on the signal-to-noise ratio and how
much the system is expected to change. For example, Fig. 29 shows the effect of the forgetting
factor on a single-input, single-output (SISO), single degree of freedom (SDOF), time-invariant
system. A higher forgetting factor is less sensitive to noise; one way to think of this is that the
higher forgetting factor is using more past data in its averages, thus smoothing out the noise
somewhat. On the other hand, it will be seen below that a higher forgetting factor is slower in
reacting to real changes in the system for the same reason. (In what follows, if the forgetting
factor is not specified, it is 0.98.)

Of course, the accuracy of any identification algorithm is dependent on the quality of the data
used to do the identification. The effect of the magnitude of the sensor noise on the SISO, SDOF,
time-invariant system is shown in Fig. 30, with signal-to-noise ratios of 4, 10, and 20. The
frequency estimation is within a few percent of the actual even for a signal-to-noise ratio of 10;
damping estimates are not as accurate (which is generally the case for most identification algo-
rithms), being within 15-20% for a signal-to-noise ratio of 20.

One helpful step that can be taken before the identification to improve the estimator is to
prefilter the input and output data through a bandpass filter. This can serve to eliminate both high

Two-Stage Adaptive Monitoring 53

weight

Figure 28: Weight of past samples using various forgetting factor values.

frequency noise that is far out of the frequency bandwidth of the structure and low frequency drift
or bias that may occur due to inaccuracies in sensors and acquisition hardware. Since the data
here is from simulation, the latter problem does not occur, but a lowpass filter, even a first-order
filter, to eliminate the high frequency noise improves the results of the estimator. Figure 31 shows
that this is true for both frequency and damping estimates with filters of several orders (all have
cut-off frequency approximately 2.6 times the natural frequency of the oscillator). The results
below use an eighth-order lowpass filter.

5.2.2 Tracking a Time-Varying SDOF System

To verify that a time-varying system can be monitored, frequency and damping estimates of
the SISO, SDOF system are found as the system changes in several ways. Several different values
of the forgetting factor are used to demonstrate how that parameter changes the response of the
estimation as the system is modified. Piecewise time-invariant changes dwell for a period of time
at the base system, instantaneously changes and dwells for a like duration with new system char-
acteristics, and then changes instantaneously back to the base system,; this allows an evaluation of
the tracking ability of the identification to follow an instantaneous change in system configuration.
Continuously time-varying changes demonstrate the ability to follow small, but continuous,
changes in system characteristics.

The first modification is letting the mass instantaneously decrease by 50% for a period of time
and then back to its original value. The frequency and damping estimates of this system are shown
in Fig. 32. The lower forgetting factor reacts much more quickly to the change in frequency and
damping, but displays significantly more noise, especially in the damping estimate. In all cases,
however, the identification algorithm is able to track in on the new frequency and damping values.

Two-Stage Adaptive Monitoring 54

1.04 T

T T T T T T
e 42 0.95]
1.03 ———4=098
| A=099
| ! —— A=0995
1.02f , |
' i -
ik i
~ Ty ;
“ - Py] g H F‘
'§|§I.01 i 1 | ,‘,F- 1] | I ! ;
> ‘ - A \..= i A
? A Vi (NN |
i A LR R o (D
E " AR LA W I
b R
i E
0.99 ! ‘
0.98 |
0-97 A 1 1 1 A 1 1
0 100 200 300 400 500 600 700
time [secs]
0.1 T | T T T T L) T
i
A=095
0.09 A=098 7
e = 0.99
! — 1=0.995
0.08 | 1
i
0.07 . N 1
§
& 0.06
§
0.05
0.04§ z
0.03 .
0'02 1 1 1 1 1 1. i
0 100 200 300 400 500 600 700
time [secs]

Figure 29: The effect of varying the forgetting factor on the identified
frequency and damping of a SISO SDOF time-invariant system.

Two-Stage Adaptive Monitoring

55

1.12 EE‘E%E‘E W‘]
mT;.oa | l; :' i 'h&
: W MV ﬂ,&l ML
| “‘miﬁ“%vlh ﬁ o) W
¥

i RTY

" .w\'ﬂ \.,w"‘, ?‘ {J‘ ! t, 'I‘“‘"‘

i@ i n
¢

0.98
0 160 2(‘)0 3(1)0 ime [stég] 560 660 760
0.2] T
0.18 E—T .
osll] 4 —— s, =005 4 ?[|
‘ } z ‘ Ii)‘7 |
o i
Eouefitl ! '{l‘n" i . ¢
o (TR S
| DU e Ry
o Ui wl‘ IR\
0.08 i . ﬁ}riwgw Q‘{ i { { J}Q}‘é\’ﬁ ff\,'%j W 4 ﬂ*f |
| T P T I A A
oo h k 'ﬁ“ .M\a W. y ~“ N TATYA Ll \h
0.04
0 1 (I)O 260 360 460 560 6(I)0 760

time [secs]

Figure 30: The effect of sensor noise magnitude on the identified frequency
and damping of a SISO SDOF time-invariant system.

Two-Stage Adaptive Monitoring 56

e filter order = 1

—— filter order = 4
filter order = 8
0.98 4
0.97 L 1 1 1 1 1 1
0 100 200 300 400 500 600 700
time [secs]
0-1 T T T T T T T
- g filter
0.09 filter order = 1]
filter order = 4
filter order = 8

0.081

0.04f

e 5 1 i 1 1
0 100 200 300 400 500 600 700
time {secs)

Figure 31: The effect of prefiltering with a lowpass filter of various orders on the
identified frequency and damping of a SISO SDOF time-invariant system.

Two-Stage Adaptive Monitoring 57

1-5 T T T T T T T

1.4}

iy
w

]

rads
_, sec
o

frequency [

'y
-t

0.9 L 1 A 1 1) i
0 100 200 300 400 500 600 700
time {secs]

0.11 4
—— 4=095

0.1

0.09

damping ratio
o o
= o
< ©

o
=]
D

e
(=]
G

0.04

0.03

0.02 u 1 1 1 1 1 1 4
0 100 200 300 400 500 600 700
time [secs]

Figure 32: Tracking the frequency and damping of a piecewise
time-invariant (mass decreasing) SISO SDOF system.

Two-Stage Adaptive Monitoring 58

Figures 33 and 34 show similar systems except where the spring stiffness decreases and
increases, respectively, by a factor of two, causing the frequency to change by a factor of J2. In
both cases, the frequency and damping estimates settle down to something near their exact values.

Changes in damping ratios are critical for monitoring such phenomena as flutter. A decrease
in damping alone gives the results in Fig. 35 where the damping is instantaneously cut in half for
a period of time. The frequency estimates remain relatively constant; the damping estimate is able
to track the changing damping ratio fairly well. Again, it is seen that the forgetting factor has a
significant effect on the speed of tracking to the new value and a like effect on the sensitivity to
noise. Figure 36 shows that a similar change, but now increasing damping by 50%, results in the
same effects.

The frequency and damping estimates due to a continuously time-varying change in the mass
of a SISO, SDOF system are shown in Fig. 37. The frequency tracks quite well, with some short
time lag, but damping estimates demonstrate a larger time lag, especially to an increase in mass
(causing a decrease in damping and frequency). Changes in damping alone, however, allows for
much better damping estimates, as seen in Fig. 38. Here, the damping follows a slow sinusoidal
value between 50% above and 50% below the nominal value. The damping estimate is able to
track this kind of change quite well.

5.2.3 Tracking Two Time-Varying MDOF Systems

Most of the observations made for the single degree of freedom hold also for multi-input,
multi-degree of freedom systems. Two multi-degree of freedom systems were examined, with two
and six degrees of freedom, respectively. In both cases, the inputs to the systems are independent
Gaussian white noise forces on each mass, and the output is the displacement of mass number 1.

Figure 39 demonstrates that the algorithm can identify and track a two degree of freedom
system when one of the masses changes for a period of time. The frequencies and damping ratios
for a time-invariant six degree of freedom system are shown in Fig. 40. It is worth noting that it
takes a short amount of time for the estimators to settle on the correct values, but it does find them.
The same observation can be seen in Fig. 41, which tracks the same system but with instantaneous
jumps in one mass, causing changes in both frequency and damping. Here, it takes a short amount
of time after the jumps for the estimator to settle back to the exact values, but it does appear able
to do so.

Monitoring modal response of the SDOF system in the previous section is, of course, trivial
since there is but one mode. Here, however, with a multi-degree of freedom system, the Kalman
filter can be used to monitor modal responses. Figure 42 shows the modal responses for this time-
varying 6DOF system. The accuracy of the estimation depends somewhat on how much each
mode is excited and how much each mode contributes to the displacement of the measured output;
Fig. 42 also shows that the portion of the output contributed by the higher frequency modes was
significantly less than that by the lower frequency modes. Thus, it would be expected that the
lower frequency modes would be better identified, and that is indeed the case.

The frequency content of the modes after a change in one of the masses, as monitored by the
Kalman filter, for the 6DOF system is shown in Fig. 43. The top graph is the discrete Fourier
transform of the modal responses over a short period and the bottom is an average of several of
these DFTs. The expectation that lower frequency modes would be better observed and identified
is obvious here, where the lowest modes demonstrate the least relative noise in the DFTs.

Two-Stage Adaptive Monitoring 59

rads]
sec
o
©
T

e

®

2
T

frequency [
=]

)

T

0.75

071

0.65F -

0 X 6 L L i 1 1 1
0 100 200 300 400 500 600 700

time [secs]

0.11 T T T T T T T

0.01 e i A 1 1 1 i
0 100 200 300 400 500 600 700

time [secs)

Figure 33: Tracking the frequency and damping of a piecewise time-
invariant (spring stiffness decreasing) SISO SDOF system.

Two-Stage Adaptive Monitoring 60

1.5 T T T T T T T

time [secs])

0.11 T T T T T T T

~— 1=095
A=098 B
A=099 i

0.09H

©
o
©

o
o
3

damping ratio

o
=
>

o
=]
0

0.04

0.03} 4

0 X 02 L 1 1 1 1 1 i
0 100 200 300 400 500 600 700
time {secs]

Figure 34: Tracking the frequency and damping of a piecewise time-
invariant (spring stiffness increasing) SISO SDOF system.

Two-Stage Adaptive Monitoring 61

1'08 T T T T T T T
1.06
1.04
—1.02 | .
'8 / H 1)3
El§ 3 , v F ‘% o '
S) dik i | i 3
% il ff f
0.98H \ ! 4
e A 20,95
0.961 e) = 0.98 7
— 1=099
0.941 -
o‘ 2 1 1 L J. 1 1 i
® [4] 100 200 300 400 500 600 700
time [secs]
0.1 T T T T T T T
0.09 4
—— =095 i
0.08 —— =098
! —— =099
0.07 |)
4 | : 4 'l —
: 0.06 ‘. 1. 4 | ‘
g) Yt O { '\ ! u ‘ |
£ 005 ITAT- e T 1Y L 'u DWW e
© 0.04 } H i : h(b
‘ f i i
0.03 , ') .r :
0.02 ‘ 1
| |
0.01 ‘ 4
f
0 1 1 1 1 1 1 i
0 100 200 300 400 500 600 700

time [secs]

Figure 35: Tracking the frequency and damping of a piecewise time-
invariant (damping decreasing) SISO SDOF system.

Two-Stage Adaptive Monitoring

62

1.08 T T T T T T T

1.06 4
A=095
———1=098
1.04 — A=099 g
— 1.02H | e
-§|§ | ¥ \ \t 1’*
1 "1 g N d B0 B !‘ i & A l'u

frequency [
=

0.98 .
0.96 .

0.94 .

1 1 I 1
0 100 200 300 400 500 600 700
time [secs]

— 41=098
— A=099

|
|
|
|

damping ratio

___.g_.

g
Q
@

1 1

0 100 200 300 400 500 600 700
time [secs]

Figure 36: Tracking the frequency and damping of a piecewise time-
invariant (damping increasing) SISO SDOF system.

Two-Stage Adaptive Monitoring 63

1.5 T T T

14

1.3

ﬂ]
sec—.

frequency [
o
©

0.7

0.6

0.5 . .
0 500 1000 1500 2000
time [secs]

damping ratio

2

0.031

0.02f

{
i :
0.01F i _

0 500 1000 1500 2000
time [secs]

Figure 37: Tracking the frequency and damping of a continuously
time-varying (mass changing) SISO SDOF system.

Two-Stage Adaptive Monitoring 64

1.05

1.04F

1.03f

-
[=3
N

T

0.96

———) =0.95
A=098
A=099

0.95
0

500 1000
time [secs]

1500

2000

0.12

0.1}

0.08}

damping ratio
o
=
I

0.04

0.021

A=095
—A1=098
—1=099

500 1000
time [secs]

1500

1
2000

Figure 38: Tracking the frequency and damping of a continuously
time-varying (damping changing) SISO SDOF system.

Two-Stage Adaptive Monitoring 65

1.6

Sec
o
T

1

-
T
1

frequency (25

0.6 S~ i

04 | 1 L i 1 1
0 100 200 300 400 500 600 700

time [secs]

0-12 T T T T T T T

o 1 1 1 1 1 4 1
0 100 200 300 400 500 600 700
time [secs]

Figure 39: Tracking the frequency and damping of a piecewise
time-invariant (one mass increases) MISO 2DOF system.

Two-Stage Adaptive Monitoring 66

]

mads
sec

et]

frequency [
—

0.5 .
0 A 1 i L) | 1
0 100 200 300 500 600 700

time [secs]

damping ratio

e o o o o ¢

o [=] [=] g (]

- n w an
S——— e e

o
o

i

100 200 300 400
time [secs]

Figure 40: Tracking the frequency and damping of

500

600

a time-invariant MISO 6DOF system.

700

Two-Stage Adaptive Monitoring

67

25

ﬁ]
- sec

frequency [

0.5

o L 1 1 1 1 I} L 1 i 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time [secs]
012 T T LE T KT T T
a l : -
0.1t |

0.0

= 2

©
]

damping ratio
o
]
T
>
§
H

o 200 400 600 800 1000 1200 1400 1600 1800 2000
time [secs]

Figure 41: Tracking the frequency and damping of a piecewise
time-invariant (mass #3 decreases) MISO 6DOF system.

Two-Stage Adaptive Monitoring 68

100 T T

80

-40
60 | 4
.80 | 4
-100 i 1 L 1
0 500 1000 1500 2000
time [secs]
1 02 T T T T

modal response RMS

<¢— lower frequency higher frequency —»

10

mode number

Figure 42: Modal response of MISO 6DOF system after one mass has decreased.

Two-Stage Adaptive Monitoring 69

-1 0
10 10
rads
frequency [E]

1

0
frequenc [ﬁ]10
red Y ec

Figure 43: The frequency content of the 6 modal responses after one mass has
decreased: one FFT (top) and several averaged FFTs (bottom).

Two-Stage Adaptive Monitoring 70

5.2.4 Observations on Two-Stage Adaptive Monitoring

There are several important observations that can be made from the above examples. The first
is that natural frequency estimation is consistently more robust than estimation of damping ratios.
This observation is neither surprising nor unusual, since it is true for most identification methods.
Nevertheless, damping estimates are available and do track with changes in system characteristics.

The rarx function in MATLAB® is relatively sensitive to high frequency noise, so the
lowpass filter was found to be essential. Furthermore, it was seen that multi-degree of freedom
systems demonstrated higher noise sensitivity than smaller systems. It is unclear whether these
sensitivities are an artifact of the particular implementation of the recursive least-squares identifi-
cation used in rarx or if it is inherent in the algorithm itself. From hints in the literature, it is
suspected that it is the former.

The poor excitation of higher modes probably contributed to less accurate estimation of the
higher frequencies and corresponding damping ratios. An example could, of course, be con-
structed to more evenly excite the various modes, and in which the output has similar contributions
from the various modes; but that would, in some ways, be artificial, since one typically finds that
modal contributions and modal excitation widely vary. Thus, the example shown here is the rule,
not the exception.

Two-Stage Adaptive Monitoring 71

6.0 CONCLUSIONS AND FUTURE DIRECTION

On-line monitoring of time-varying structural systems is a difficult problem. The Reciprocal
Modal Vector method is useful for many systems but restricted to those whose modeshapes do not
change over time. This is, of course, not the case most of the time. Furthermore, limited sensor
arrays further disallow the use of the MRMYV method.

H__-based identification methods work satisfactorily for small, off-line problems and they
have been applied to a number of real-world problems. But they require a significant amount of
interaction by the engineer. Furthermore, they also are relatively computationally intensive,
requiring solutions of large eigenvalue problems, thus limiting their usefulness in an on-line
context.

There are, however, a number of recursive identification algorithms that are useful in on-line
monitoring. They can be implemented in a two-stage algorithm that also uses a modal Kalman
filter to monitor modal responses in real-time.

Several issues remain for further study. No true multi-input, multi-output (MIMO) systems
were studied here. The standard identification algorithms that are available within MATLAB™ were
used to study least-squares time-domain identification; the recursive versions of these algorithms
are not implemented for MIMO systems in the current version of the System Identification Toolbox
(Ljung, 1995). Furthermore, “fast” versions of the recursive least-squares methods need to be
investigated for their claims regarding computational requirements being less than O(n?). This is
necessary if large, complex systems are intended to be monitored.

Conclusions and Future Direction 72

7.0 REFERENCES

L.

10.

11.

12.

13.

H. Akg¢ay, G. Gu, and P.P. Khargonekar, 1992. “Identification in H,, with Nonuniformly
Spaced Frequency Response Measurements.” 1992 American Control Conference, Chicago,
Illinois, June 24-26, 1992. Proceedings (American Automatic Control Council, Evanston,
linois, 1992), 246-250.

H. Akgay, G. Gu, and P.P. Khargonekar, 1993. “A Class of Algorithms for Identification in
H_.: Continuous-Time Case.” IEEE Transactions on Automatic Control, 38(2), Feb. 1993,
289-294.

V.M. Adamjan, D.Z. Arov, and M.G. Krein, 1971. “Analytic Properties of Schmidt Pairs for
a Hankel Operator and the Generalized Schur-Takagi Problem.” Mathematics of the USSR -
Sbornik, 15(1), Sept. 1971, 31-73 (Russian original Tom 86(128)).

J. Adcock, 1987. “Curve Fitter for Pole-Zero Analysis.” Hewlett-Packard Journal, Jan.
1987, 33-36.

A.E. Aktan, V.J. Hunt, M.J. Lally, R.B. Stillmaker, D.L. Brown, and S.J. Shelley, 1995.
“Field Laboratory for Modal Analysis and Condition Assessment of Highway Bridges.” 1 3t
International Modal Analysis Conference, Nashville, Tennessee, Feb. 13-16, 1995. Proceed-
ings (D.J. DeMichele director; Society for Experimental Mechanics, Bethel, CT, 1995), 718-
7217.

R.J. Allemang, 1980. “Investigation of Some Multiple Input/Output Frequency Response
Function Experimental Modal Analysis Techniques.” Ph.D. Dissertation, Department of
Mechanical and Industrial Engineering, University of Cincinnati, 1980.

A. Bahri and A.J. Helmicki, 1995. “H,, Identification-Based Robust Control System
Design.” 1995 American Control Conference, Seattle, Washington, June 21-23, 1995.
Proceedings (American Automatic Control Council, Evanston, Illinois, 1995), 3556-3561.

. E.-W. Bai and M.S. Andersland, 1994. “Stochastic and Worst Case System Identification

Are Not Necessarily Incompatible.” Automatica, 30(9), Sept. 1994, 1491-1493.

E.-W. Bai and S. Raman, 1994. “Robust System Identification with Noisy Experimental
Data: Projection Operator and Linear Algorithms.” Automatica, 30(7), July 1994, 1203-
1206.

J.L. Beck, 1996. “System Identification Methods Applied to Measured Seismic Response.”
11th World Conference on Earthquake Engineering, Acapulco, Mexico, June 1996.

J.L. Beck and M.W. Vanik, 1996. “Structural Model Updating Using Expanded Mode-
shapes.” 1lth ASCE Engineering Mechanics Specialty Conference, Fort Lauderdale,
Florida, May 19-22, 1996. Proceedings (Y.K. Lin and T.C. Su, eds., ASCE, New York,
1996), 152-155.

R.A. Canfield and L. Meirovitch, 1994. “Integrated Structural Design and Vibration
Suppression Using Independent Modal Space Control.” AIAA Journal, 32(10), Oct. 1994,
2053-2060.

C.-W. Chen, J.-K. Huang, M. Phan, and J.-N. Juang, 1992. “Integrated System Identification
and State Estimation for Control of Flexible Space Structures.” Journal of Guidance,
Control, and Dynamics, 15(1), Jan.-Feb., 1992, 88-95.

References 73

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. J. Chen, G. Gu, and C.N. Nett, 1993. “Worst Case Identification of Continuous Time
Systems via Interpolation.”” 1993 American Control Conference, San Francisco, California,
June 2-4, 1993. Proceedings (American Automatic Control Council, Evanston, Hlinois,
1993), 1544-1548.

J. Chen, G. Gu, and C.N. Nett, 1994. “Worst Case Identification of Continuous Time
Systems via Interpolation.” Automatica, 30(12), Dec. 1994, 1825-1837.

J. Chen and S. Wang, 1995. “New Time-Domain Algorithms for H_, Identification.” 1995
American Control Conference, Seattle, Washington, June 21-23, 1995. Proceedings (Amer-
ican Automatic Control Council, Evanston, Illinois, 1995), 1976-1980.

C.K. Chui and G. Chen, 1987. Kalman Filtering with Real-Time Applications. Springer-
Verlag (Berlin), 1987.

J. Cioffi and T. Kailath, 1984. “Fast Recursive Least-Squares Transversal Filters for Adap-
tive Filtering”” IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2), 304-
337.

M.A. Dahleh and 1.J. Diaz-Bobillo, 1995. Control of Uncertain Systems: A linear program-
ming approach. Prentice Hall (Englewood Cliffs, NJ), 1995.

G. Didinsky, Z. Pan, and T. Basar, 1995. “Parameter Identification for Uncertain Plants
using H,, Methods.” Automatica, 31(9), Sept. 1995, 1227-1250.

L.C. Freudinger, 1990. “Analysis of Structural Response Data Using Discrete Modal
Filters” M.S. thesis, Department of Mechanical, Industrial, and Nuclear Engineering,
University of Cincinnati, Cincinnati, Ohio, 1990.

L.C. Freudinger, 1991. “Analysis of Structural Response Data Using Discrete Modal
Filters” NASA Contractor Report CR-179448, May 1991.

J.H. Friedman, 1996. “Identification, Modeling, and Control of Flexible Structures.” Ph.D.
dissertation, Department of Aerospace Engineering, University of Michigan, Ann Arbor,
Michigan, 1996.

J.H. Friedman and PP. Khargonekar, 1995a. “A Comparative Applications Study of
Frequency Domain Identification Techniques.” 1995 American Control Conference, Seattle,
Washington, June 21-23, 1995. Proceedings (American Automatic Control Council, Evan-
ston, Illinois, 1995), 3055-3059.

J.H. Friedman and P.P. Khargonekar, 1995b. “Application of Identification in H,, to Lightly
Damped Systems: two case studies.” IEEE Transactions on Control Systems Technology,
3(3), Sept. 1995, 279-289.

R. Ghanem and M. Shinozuka, 1995. “Structural System Identification, I: Theory.” Journal
of Engineering Mechanics, 121(2), Feb. 1995, 255-264.

L.J. Griffiths, 1977. “A Continuously Adaptive Filter Implemented as a Lattice Structure.”
1977 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hartford,
Connecticut, May 9-11, 1977. Proceedings (IEEE, Piscataway, NJ, 1977), 683-686.

References 74

28

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

. G. Gu, C.-C. Chu, and G. Kim, 1994. “Linear Algorithms for Worst Case Identification in
H_, with Applications to Flexible Structures.” 1994 American Control Conference, Balti-
more, Maryland, June 29 - July 1, 1994, Proceedings (American Automatic Control
Council, Evanston, Illinois, 1994), 112-116.

G. Gu and P.P. Khargonekar, 1991. *“Linear and Nonlinear Algorithms for Identification in
H,, with Error Bounds.” 1991 American Control Conference, Boston, Massachusetts, June
26-28, 1991. Proceedings (American Automatic Control Council, Green Valley, Arizona,
1991), 64-69.

G. Gu and P.P. Khargonekar, 1992a. “A Class of Algorithms for Identification in H_,.” Auto-
matica, 28(2), March 1992, 299-312.

G. Gu and P.P. Khargonekar, 1992b. “Linear and Nonlinear Algorithms for Identification in
H,, with Error Bounds.” IEEE Transactions on Automatic Control, 37(7), July 1992, 953-
963.

G. Gu and P.P. Khargonekar, 1993. “Frequency Domain Identification of Lightly Damped
Systems: The JPL Example.” 1993 American Control Conference, San Francisco, Cali-
fornia, June 2-4, 1993. Proceedings (American Automatic Control Council, Evanston,
Illinois, 1993), 3052-3056.

G. Gu, PP. Khargonekar, and E.B. Lee, 1989. “Approximation of Infinite Dimensional
Systems.” IEEE Transactions on Automatic Control, 34(6), June 1989, 610-618.

AJ. Helmicki, C.A. Jacobson, and C.N. Nett, 1989. “H__ Identification of Stable LSI
Systems: A Scheme with Direct Application to Controller Design.” 1989 American Control
Conference, Pittsburgh, Pennsylvania, June 21-23, 1989. Proceedings (American Automatic
Control Council, Green Valley, Arizona, 1989), 1428-1434.

A.J. Helmicki, C. A. Jacobson, and C.N. Nett, 1990a. “Identification in H,,: A Robustly
Convergent, Nonlinear Algorithm.” 1990 American Control Conference, San Diego, Cali-
fornia, May 23-25, 1990. Proceedings (American Automatic Control Council, Green Valley,
Arizona, 1990), 386-391.

A.J. Helmicki, C.A. Jacobson, and C.N. Nett, 1990b. “Identification in H_.: The Continuous-
Time Case.” 1990 American Control Conference, San Diego, California, May 23-25, 1990.
Proceedings (American Automatic Control Council, Green Valley, Arizona, 1990), 1893-
1898.

A.J. Helmicki, C.A. Jacobson, and C.N. Nett, 1990c. “Identification in H_: Linear Algo-
rithms.” 1990 American Control Conference, San Diego, California, May 23-25, 1990.
Proceedings (American Automatic Control Council, Green Valley, Arizona, 1990), 2418-
2423.

A.J. Helmicki, C.A. Jacobson, and C.N. Nett, 1991a. “Fundamentals of Control-Oriented
System Identification and Their Application for Identification in H_” 1991 American
Control Conference, Boston, Massachusetts, June 26-28, 1991. Proceedings (American
Automatic Control Council, Green Valley, Arizona, 1991), 89-99.

A.J. Helmicki, C.A. Jacobson, and C.N. Nett, 1991b. “Control Oriented System Identifica-
tion: A Worst-Case Deterministic Approach in H_” IEEE Transactions on Automatic
Control, 36(10), Oct. 1991, 1163-1176.

References 75

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

A.J. Helmicki, C.A. Jacobson, and C.N. Nett, 1992. “Worst-Case Deterministic Identifica-
tion in H..: The Continuous-Time Case.” IEEE Transactions on Automatic Control, 37(5),
May 1992, 604-610.

D.]. Inman, 1989. Vibration: with Control, Measurement, and Stability. Prentice Hall
(Englewood Cliffs, NJ), 1989.

C.A. Jacobson and G. Tadmor, 1993. “A Note on H,, System Identification With Probabi-
listic Apriori Information.” 1993 American Control Conference, San Francisco, California,
June 2-4, 1993. Proceedings (American Automatic Control Council, Evanston, Illinois,
1993), 1539-1543.

R.N. Jacques, 1994. “On-line System Identification and Control Design for Flexible Struc-
tures.” Ph.D. dissertation, Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, Mass., 1994.

E.A. Johnson, L.A. Bergman, P.G. Voulgaris, and L.C. Freudinger, 1996. “Modal Filter
Based On-line Monitoring of Uncertain Structural Systems.” 11" ASCE Engineering
Mechanics Specialty Conference, Fort Lauderdale, Florida, May 19-22, 1996. Proceedings
(YX. Lin and T.C. Su, eds., ASCE, New York, 1996), 156-159.

J.-N. Juang, 1994. Applied System Identification. Prentice Hall (Englewood Cliffs, NJ),
1994.

J.-N. Juang and R.S. Pappa, 1985. “An Eigensystem Realization Algorithm for Modal
Parameter Identification and Model Reduction” Journal of Guidance, Control, and
Dynamics, 8(5), Sept.-Oct. 1985, 620-627.

J.-N. Juang, M. Phan, L.G. Horta, and R.W. Longman, 1993. “Identification of Observer/
Kalman Filter Markov Parameters: Theory and Experiments.” Journal of Guidance,
Control, and Dynamics, 16(2), March-April 1993, 320-329.

R.L. Kosut, G.C. Goodwin, and M.P. Polis, 1992. “Introduction, Special Issue on System
Identification for Robust Control Design.” IEEE Transactions on Automatic Control, 37(7),
July 1992, 899.

D.T. Lee, M. Morf, and B. Friedlander, 1981. “Recursive Least Squares Ladder Estimation
Algorithms.” IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(3), 627-
641.

E. Levy, 1959. “Complex-Curve Fitting.” IRE Transactions on Automatic Control, AC-4(1),
May 1959, 37-44.

R. Lind and M. Brenner, 1996. “p-Based Robust Stability Estimation of Aeroelastic Systems
using Flight Derived Uncertainty Models.” Submitted to the AIAA Journal of Guidance,
Control and Dynamics, 1996.

K. Liu and R. Skelton, 1993. “Q-Markov Covariance Equivalent Realization and its Appli-
cation to Flexible Structure Identification.” Journal of Guidance, Control, and Dynamics,
16(2), Mar.-Apr. 1993, 308-319.

L. Ljung, 1987. System Identification: Theory for the user. Prentice Hall (Englewood Cliffs,
NIJ), 1987.

References 76

54

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

67.

68.

69.

70.

L. Ljung, 1995. System Identification Toolbox 4.0 User’s Guide. The MathWorks, Inc.
(Natick, Mass.), 1995.

L. Ljung and T. Soderstrom, 1983. Theory and Practice of Recursive Identification. MIT
Press (Cambridge, Mass.), 1983.

J. Makhoul, 1977. “Stable and Efficient Lattice Methods for Linear Prediction.” IEEE
Transactions on Acoustics, Speech, and Signal Processing, 25(5), 423-428.

PM. Mikild, 1991a. “Laguerre Methods and H,, Identification of Continuous-Time
Systems.” International Journal of Control, 53(3), March 1991, 689-707.

P.M. Mikild, 1991b. “Robust Identification and Galois Sequences.” International Journal
of Control, 54(5), Nov. 1991, 1189-1200.

PM. Mikild, 1992. “Worst-Case Input-Output Identification.” International Journal of
Control, 56(3), Sept. 1992, 673-689.

P.M. Mikild, 1993. “Robust Approximate Modeling from Noisy Point Evaluations.” 1993
American Control Conference, San Francisco, California, June 2-4, 1993. Proceedings
(American Automatic Control Council, Evanston, Illinois, 1993), 1554-1560.

P.M. Mikild and J.R. Partington, 1991. “Robust Approximation and Identification in H,,.”
1991 American Control Conference, Boston, Massachusetts, June 26-28, 1991. Proceedings
(American Automatic Control Council, Green Valley, Arizona, 1991), 70-76.

P.M. Mikilid and J.R. Partington, 1992a. “Worst-Case Identification from Closed-Loop Time
Series.” 1992 American Control Conference, Chicago, Illinois, June 24-26, 1992. Proceed-
ings (American Automatic Control Council, Evanston, Illinois, 1992), 301-306.

P.M. Mikild and J.R. Partington, 1992b. “Robust Identification of Strongly Stabilizable
Systems.” IEEE Transactions on Automatic Control, 37(11), Nov. 1992, 1709-1716.

P.M. Mikilid and J.R. Partington, 1993. “Robust Approximate Modelling of Stable Linear
Systems.” International Journal of Control, 58(3), Sept. 1993, 665-683.

PM. Mikil4, J.R. Partington, and T. K. Gustafsson, 1995. “Worst-case Control-relevant
Identification.” Automatica, 31(12), Dec. 1995, 1799-1819.

L. Meirovitch and H. Baruh, 1982. “Control of Self-Adjoint Distributed-Parameter
Systems.” Journal of Guidance, Control, and Dynamics, 5(1), Jan.-Feb. 1982, 60-66.

L. Meirovitch and H. Baruh, 1985. “The Implementation of Modal Filters for Control of
Structures.” Journal of Guidance, Control, and Dynamics, 8(6), Nov.-Dec. 1985, 707-716.

L. Meirovitch and D. Ghosh, 1987. “Control of Flutter in Bridges.” Journal of Engineering
Mechanics, 113(5), May 1987, 720-736.

K.M. Nagpal and P.P. Khargonekar, 1991. “Filtering and Smoothing in an H_, Setting,” IEEE
Transactions on Automatic Control, 36(2), Feb. 1991, 152-166.

Z. Nehari, 1957. “On Bounded Bilinear Forms.” Annals of Mathematics, 65(1), Jan. 1957,
153-162.

References 77

71

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

. H. Oz and L. Meirovitch, 1983. “Stochastic Independent Modal-Space Control of Distrib-
uted-Parameter Systems.” Journal of Optimization Theory and Applications, 40(1), May
1983, 121-154.

H. Oz and L. Meirovitch, 1984. “Digital Stochastic Control of Distributed-Parameter
Systems.” Journal of Optimization Theory and Applications, 43(2), June 1984, 307-325.

P.J. Parker and R.R. Bitmead, 1987a. “Adaptive Frequency Response Identification.” 26th
IEEE Conference on Decision and Control, Los Angeles, California, December 9-11, 1987.
Proceedings (IEEE, New York, 1987), 348-353.

P.J. Parker and R.R. Bitmead, 1987b. “Approximation of Stable and Unstable Systems via
Frequency Response Identification.” 10th IFAC World Congress, Munich, Germany, July 27-
31, 1987. Proceedings (R. Isermann, ed., IFAC/Pergamon, Oxford, England, 1988),
Volume X, 358-363.

J.R. Partington, 1991. “Robust Identification and Interpolation in H.,.” International Journal
of Control, 54(5), Nov. 1991, 1281-1290.

J.R. Partington, 1992. “Robust Identification in H...” Journal of Mathematical Analysis and
Applications, 166, 1992, 428-441.

L.R. Partington, 1993. “Algorithms for Identification in H,, with Unequally Spaced Function
Measurements.” International Journal of Control, 58(1), July 1993, 21-31.

IR, Partington and P.M. Mikild, 1995a. “Worst-Case Analysis of the Least-Squares Method
and Related Identification Methods.” Systems and Control Letters, 24(3), Feb 13., 1995,
193-200.

J.R. Partington and P.M. Mikild, 1995b. “Analysis of Linear Methods for Robust Identifica-
tion in ;. Automatica, 31(5), May 1995, 755-758.

L.D. Peterson, 1993. “Efficient Computation of the Eigensystem Realization Algorithm.”
Technical Report CU-CSS-93-7, Center for Space Structures and Engineering, University of
Colorado, Boulder, Colorado, April 1993.

L.D. Peterson, 1995. “Efficient Computation of the Eigensystem Realization Algorithm.”
Journal of Guidance, Control, and Dynamics, 18(3), May-June 1995, 395-403.

K. Poola, M. Safonov, and R. Smith, 1993. “Robust Identification and Control Tutorial
Workshop,” at an IEEE Aerospace Conference, May 27, 1993.

B. Priel, E. Soroka, and U. Shaked, 1991. “The Design of Optimal Reduced-Order
Stochastic Observers for Discrete-Time Linear Systems.” IEEE Transactions on Automatic
Control, 36(11), Nov. 1991, 1300-1307. Reprinted in 36(12), Dec. 1991, 1502-1509.

C. Sanathanan and J. Koerner, 1963. “Transfer Function Synthesis as a Ratio of Two
Complex Polynomials.” IEEE Transactions on Automatic Control, 8(1), Jan. 1963, 56-58.

J.F. Schultze, R.W. Rost, and S.J. Shelly, 1996. “Adaptive Modal Space Control of Flexible
Structures: Theory.” 14" International Modal Analysis Conference, Dearborn, Michigan,
Feb. 12-15, 1996. Proceedings (A.L. Wicks, technical program chair; Society for Experi-
mental Mechanics, Bethel, CT, 1996), 292-299.

References 78

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

S.J. Shelley, 1991. “Investigation of Discrete Modal Filters for Structural Dynamic Applica-
tions.” Ph.D. dissertation, Department of Mechanical, Industrial, and Nuclear Engineering,
University of Cincinnati, Cincinnati, Ohio, 1991.

S.J. Shelley, A.E. Aktan, D.L. Brown, and R.J. Allemang, 1994. “University of Cincinnati
Experience with Implementing Active Structural Vibration Control.” First World Confer-
ence on Structural Control, Los Angeles, CA, August 3-5, 1994. Proceedings, FP4-62-70.

S.J. Shelley, A.E. Aktan, and K.L. Lee, 1994. !‘Modal Filter Based Structural Control of a
Highway Bridge.” Structures Congress ‘94, 11" ASCE Conference on Analysis and Compu-
tation, Atlanta, Georgia, April 24-26, 1994. Proceedings (N.C. Baker and B.J. Goodno, eds.,
ASCE, New York, 1994), 347-356.

S.J. Shelley and R.J. Allemang, 1994. “An Investigation of Online Vibration Parameter Esti-
mation Schemes.” NASA-Ames University Consortium, Number NCA2-734, 1994,

S.J. Shelley, R.J. Allemang, G.L. Slater, and J.F. Schultze, 1993. “Active Vibration Control
Utilizing an Adaptive Modal Filter Based Modal Control Method.” 11" International
Modal Analysis Conference, Kissimmee, Florida, Feb. 1-4, 1993. Proceedings (D.J.
DeMichele director; Society for Experimental Mechanics, Bethel, CT, 1993), 751-758.

S.J. Shelley, L.C. Freudinger, and R.J. Allemang, 1993. “Development of an On-line Modal
State Monitor”” 11" International Modal Analysis Conference, Kissimmee, Florida, Feb. 1-
4, 1993. Proceedings (D.J. DeMichele, director; Society for Experimental Mechanics,
Bethel, CT, 1993), 606-612.

S.J. Shelley, K.L. Lee, T. Aksel, and A.E. Aktan, 1995. “Active-Control and Forced-Vibra-
tion Studies on Highway Bridge.” Journal of Structural Engineering, 121(9), Sept. 1995,
1306-1312.

M. Shinozuka and R. Ghanem, 1995. “Structural System Identification, II: Experimental
Verification.” Journal of Engineering Mechanics, 121(2), Feb. 1995, 265-273.

T. S6derstrom and K.J. Astrom, 1995. “Special Issue on Trends in System Identification.”
Automatica, 31(12), Dec. 1995, 1689-1690.

P. Van Overschee and B. De Moor, 1994. “N4SID: Subspace Algorithms for the Identifica-
tion of Combined Deterministic-Stochastic Systems.” Automatica, 30(1), Jan. 1994, 75-93.

P. Van Overschee and B. De Moor, 1995. “A Unifying Theorem for Three Subspace System
Identification Algorithms.” Automatica, 31(12), Dec. 1995, 1853-1864.

M. Viberg, 1995. “Subspace-based Methods for the Identification of Linear Time-invariant
Systems.” Automatica, 31(12), Dec. 1995, 1835-1851.

J.C. Wei, R.J. Allemang, and YW. Luk, 1994. “Direct Updating Based on Modal Filter
Vectors.” 12 International Modal Analysis Conference, Honolulu, Hawaii, Jan. 31 - Feb. 3,
1994. Proceedings (D.J. DeMichele et al., eds., Society for Experimental Mechanics,
Bethel, CT, 1994), 219-224.

I. Yaesh and U. Shaked, 1992. “Game Theory Approach to Optimal Linear State Estimation

and its Relation to the Minimum H__-Norm Estimation.” IEEE Transactions on Automatic
Control, 37(6), June 1992, 828-831.

References 79

100. N. Young, 1988. An Introduction to Hilbert Space, Cambridge University Press
(Cambridge), 1988.

101. G. Zames, 1979. “On the Metric Complexity of Causal Linear Systems: € -entropy and € -
dimension for Continuous-Time.” IEEE Transactions on Automatic Control, 24(2), April
1979, 222-230.

102. Q. Zhang, R.J. Allemang, and D.L. Brown, 1990. *“Modal Filter: Concept and Applica-
tions” 8" International Modal Analysis Conference, Orlando, Florida, Jan. 1990.
Proceedings (Society for Experimental Mechanics, Bethel, CT, 1990), 487-496.

References 80

8.0 APPENDIX A: COMPUTER CODES

The codes that follow are all MATLAB® functions and scripts. They are available from the
authors l:g e-mailing to johnsone@uiuc.edu. Some of the example scripts require the
MATLAB™ stextfun toolbox (written by Douglas M. Schwarz <schwarz@kodak . com> and
available at ftp://ftp.mathworks.com/pub/contrib/graphics/stextfun) to
add styled text on graphs. A few of the codes here may require some of functions in the standard
toolboxes (e.g., the Control System Toolbox); mrmvtool, the GUI front end to mrmv, requires
the UIToo1ls toolbox from The MathWorks.

8.1 MRMYV CoDES

8.1.1 mrmv.m — Modified Reciprocal Modal Vector

mrmv is the primary code to compute Reciprocal Modal Vectors. Its input and output
arguments are explained in the help section of the code.
function [rmv,mpv,ufrf,robind, condnum,err_calc,err_total,cor_calc,cor_total,

warn] = mrmv(l,w,resp,ni,w_index,out_order,realonly, returnerror)
MRMV computes the Reciprocal Modal Vectors for the given system response.

[RMV, MPV, UFRF, ROBIND, CONDNUM, ERR_CALC, ERR_TOTAL, COR_CALC, COR_TOTAL]}
= MRMV (L,W,RESP,NUMINPUTS, W_INDEX, OUT_ORDER, REALONLY)

Inputs: L the complex roots of the modes of interest
(only one of each complex pair should be supplied)
W a vector of frequencies in RADS/SEC
RESP frequency response of the system; each column is

the transfer function between an input and an output
over the frequencies in W; the column in which is
found a given frf is ((output#)+ (input#-1)* (#outputs))
NUMINPUTS (optional) The number of inputs used (default=1)
W_INDEX {optional) index of frequencies to use in calculating
the RMVs (this is an option that permits the use of
fewer points in the frf in order to reduce computational
expense and focus on less noisy or more important
frequency ranges)
Note: an empty matrix is the same as choosing all freqgs.
QUT_ORDER (optional) response is acceleration data
response is velocity data
response is displacement data
restrict RMVs to be real (non-complex)

v Vv

v

2
1
(default) 0
REALONLY (optional) 1

0

i uH
L1 L U 1}
v

(default) > don‘t restrict them
Qutputs: RMV matrix of reciprocal modal vectors (column by column)
MPV matrix of modal participation factors
UFRF matrix of uncoupled frfs; column number
{mode#)+ (input#-1) * (#modes) is the ufrf of mode
(mode#) due to input at input {(input#). An additional

(#modes) columns at the end using the MPV as a right
weighting vector are used if multiple inputs are used.

ROBIND matrix of modal filter robustness indicators;
#cols = #modes, #rows = #outputs
CONDNUM a row vector of the condition numbers of the RMVs

(each element is the euclidian norm of the
corresponding column of ROBIND)

ERR_CALC least square error in uncoupled freq resp functions
at the frequencies of interest, W{(W_INDEX)
ERR_TOTAL as ERR_CALC but at all frequencies W
COR_CALC correlation in uncoupled freq resp functions
at the frequencies of interest, W{(W_INDEX)
COR_TOTAL as COR_CALC but at all frequencies W

dP dP dP P P IP OP OP dP dP OP JP dP dP dP OP P OP OP OF OF P P P P P JP OP OP JP P P dP dP P P dP dP dP dP P P dP dP P P

Requires NORMV, SBYS2STACK, and STACK2SBYS.

Appendix A: Computer Codes 81

mrmv.m — Modified Reciprocal Modal Vector (cont.)

% Original MRMV code by Stuart J. Shelley, 1991, in his Ph.D. disseration.
% But it has overconfusing options and too much user interaction to be
% efficient, so I've rewritten it completely.

Copyright {(c)1994-6, Erik A. Johnson <johnsone@uiuc.edu>

10/22/94 EAJ Original rewrite.

3722795 EAJ Fixed several minor bugs.
Increased efficiency (e.g., replaced pinv{(A)*B with A\B).

11/03/95 EAJ Replaced several outdated auxiliary routines.

1/10/96 EAJ Fixed optional arguments so that they may be passed as [].
Clarified error messages.

5/15/96 EAJ Fixed index problem with ni==
Allowed W_INDEX to be a mask or indices.

dP dP P AP dP dP dP IP P

% check number of inputs and outputs

if (nargin<3), error('MRMV requires at least three arguments: L, W, RESP.');
elseif (nargin>8), error{'MRMV takes at most 8 input arguments.’);

elseif (nargout>10), error(‘MRMV produces at most 10 outputs.’);

end;

% make w a column vector and 1 a row vector

w=w(:);

1=(1(:)).";

% create optional input arguments
if (nargin<=3), ni=[]; end:

if (nargin<=4), w_index=[]; end;

if (nargin<=5), out_order=[(}; end;
if (nargin<=6), realonly=[(]; end:
if (nargin<=7), returnerror=0; end:;
warn = ‘‘;

% check input argument sizes
w_index=w_index(:);
if (~all(size(ni))), ni=1; end;
if (isempty(w_index)},
w_index=(1:length(w})’;
elseif (any(w_index>1ength(w))|(any(w_index<1)&(length(w_index)~=1ength(w)))),
errmsg = ‘MRMV got bad frequency indices.’:;
if (returnerror), rmv=errmsg; return; else, error (errmsg); end;
end;
if (size(resp,l)~=length(w)),
errmsg = [‘'MRMV requires that the #of rows in the ‘...
‘frfs & the #of frequencies be the same.’}:;
if (returnerror), rmv=errmsg; return; else, error(errmsg): end;
elseif (rem(size(resp,2),ni)~=0),
errmsg = 'MRMV requires that #of columns of RESP be a multiple of NUMINPUTS. ‘;
if (returnerror), rmv=errmsg; return; else, error(errmsg); end;
end;
if (~all(size{out_order})),
out_order=0;
elseif isstr(out_order),
ii = find(lower (out_order(i))=='dva’};
if (all(size(ii))),
out_order = ii-1;
else,
errmsg = ['MRMV does not recognize ‘'’‘' out_order{:)}.’
**’ as a valid OUT_ORDER.'];
if (returnerror), rmv=errmsg; return; else, error{errmsg); end;
end;
end;
if (~all(size(realonly))), realonly=0; else, realonly=realonly(l): end;

% just use the frequencies given by the index

if (all(w_index==0|w_index==1) & length{w_index)==size(resp,1)).
% we got a mask; convert to indices
w_index = find{(w_index);

end;

w_allw=w;

w=w_allw(w_index);

Appendix A: Computer Codes 82

mrmv.m — Modified Reciprocal Modal Vector (cont.)

% get sizes of things
nw=length(w) ;
no=size(resp,2)/ni;
nl=length(l);

% just use resp values corresponding to frequencies given by w_index

% stack the resp values

resp_allw=resp;

H=[sbys2stack(resp_allw(w_index, :),size(resp_allw,2)/no) zeros(nw*ni,ni-1)1};

% create rhs vector
D = zeros(nw*ni,l);
le=conj (1) ;
=w(:,ones(1,nl));
Di = 1./ (ww+lc(ones(nw,1),:})*sqrt(-1)) - 1./{ww+l(ones(nw,1),:)*sqrt(-1));
if (out_order~=0), Di=Di.*({ww*sqrt(-1)).”out_order); end;
clear(‘ww’);

if (ni>1),
Di_index = (l:nw)’;
Di_index = Di_index(:,ones(1l,ni-1));
H_index nw*no*ni + (1:(ni-1))*nw+(0:(ni-2))*nw*ni;

H_index = Di_index + H_index(ones(nw,1),:);
Di_index = Di_index(:);
end;

% cycle through the modes
for k=1:nl,
D{(l:nw)=Di(:,k);
if (ni>1), H(H_index)=Di(Di_index,k); end;
kk = find((l(k)==1)&((1l:nl)<k));
if (length(kk)==0},
% single roots and the 1lst instance of repeated roots
if (realonly),

num = [real{D);imag(D}];
den = [real(H);imag(H}];
else,
num = D;
den = H;
end;
else,

% 2nd and subsequent instances of repeated roots

D2 = normv(Di(:,kk}))}.’:;

H2 = [zeros{length(kk),no) ((D2./(mpv(l,kk).’))*ones(1l,ni-1})).*(mpv(2:ni,kk)
if (realonly),

num = [real([(D;D2});imag([D;D2})];

den = [real{[H;H2]);imag([H;H2])];
else,

num = [D;D2];

den = [H;H2]);

end;
end;
% check rank
if ~all(size(warn)),
denrank = rank(den);
if (denrank<min{(size(den))),
warn = sprintf([‘MRMV warning: rank deficiency (matrix is’
‘' %g-by-%g, rank is %g).'],size(den),denrank);
end;
end;
% compute it
rmve = den \ num;
rmvn=rmve (1l:no); rmva=rmvn/norm(rmvn);
mpfn=[1; -rmve(no-1+(2:ni))]; mpfn=mpfn/norm{mpfn);
rmv(:,k)=rmvn;
mpv(:,k)=mpfn;
end;

% version 2, faster, but much more memory and doesn‘t handle repeated roots.
%lc=conj(l);

D]

Appendix A: Computer Codes 83

mrmv.m — Modified Reciprocal Modal Vector (cont.)

fww=w{(:,ones(1,length(l)));

%$1ll=1(ones(nw,1),:);

$lc=1lc({ones(nw,1),:);

$D1 = 1./ (ww+lc*sqgrt(-1)) - 1./(ww+ll*sqrt(-1));
$k=(1:nl); k=k(ones{ni-1,1),:); k=k(:)’;

$DD = [Di(:,k); zeros(nw*{ni-1),nl*(ni-1))}];
$DD2=zeros (nw* (ni-1) ,ni*nl);

$DD2(:)=DD(:); clear('DD’);

gk=(1:(ni-1))";

$k2=(0: (nl1-1))*ni;
$k=k(:,ones(1,nl))+k2(ones(ni-1,1},:);

$xq = resp_allw(w_index,:)

% (mg,nqgl = size(xq);

fH=zeros (mg*no,ng/no) ;
$[ii,jjl=meshgrid(((l:no)~1)*ng*mg/no,l:mq);
%[ii,jjl=meshgrid(((1l: (nqg/no}))-1)*mqg,ii(:)+3j(:));:
SH(:)=x(ii(:)+3j(:)):

$clear(‘*ii’,'jj’','xq’);

$H=[H [zeros(nw,nl*(ni-1));DD2(:,k(:}*}11;
$clear(‘DD2’);

$rmve = H \ [Di;zeros(nw*(ni-1),nl)l];

$clear (‘H’);

grmv=rmve (l:no, :); rmv=rmv/norm{rmv);
sk=(no+(1:{(ni-1)))’; k2=(0:(nl-1))*(no+nl*(ni-1});
$k=k(:,ones(1,nl))+k2(ones(ni-1,1),:);
$smpv=zeros({ni-1,nl); mpv(:)=rmve(k(:)};
$mpv=[ones{1,nl) ;mpv]}; mpv=mpv/norm(mpv);

% If the system is *square” and the sensors and actuators are collocated,
% then we could *fix” the last mode. Note that this would be cheating,

% but it seems to produce consistently better results. We do not do it
% here because the general system is not square and collocated.

$if (size(rmv,l)==size(rmv,2)),

% rmv{:,no) = [-inv{rmv(1l:(no-1),1:(no-1)).’)*{rmv{no,1l:(no-1)).");1];
$ rmv(:,no) = rmv(:,no}/norm{rmv(:,no)};
$end;

% compute the rest of the outputs

if (nargout>=3},
sufrf=? (#rows=length(w_allw), #cols=nl*{(ni+(ni>1)))
sufrf is the filtered (hopefully, uncoupled) frequence responses
[um,un) = size(resp_allw):
ufrf=sbys2stack(resp_allw,un/no) *rmv;
ufrf=stack2sbys{(ufrf,un/no);

if (ni»1),
kl=(1l:nl: (nl*ni))‘;
k2=1:nl1;
k=kl!{:,ones{1l,nl))+k2(ones{ni, 1}, :}-1;
k=k(:)"’;

k2=k2(ones{um,1),:); k2=k2{(:}’;
utmp=zeros (um,nl);
utmp (:) =sum(sbys2stack{ufrf(:, k),size(k,2)/ni)’.*mpv(:, k2)}";
ufrf={ufrf utmp); clear(‘utmp’};
end;
if (nargout>=4}),
%robind=? (#rows=no, #cols=nl)
srobind is the matrix of modal filter robustness indicators
for k=1:no,

h_norm(k,l)=norm{resp(:,k+no*(0: (ni-1))), ‘fro’);
end;
Di_norm = normv(Di);
for k=1:nl,

robind(:,k)=abs(rmv(:,k).*h_norm)/Di_norm(l, k};
if (ni>1), robind(:,k)=robind(:,k)*mpv(l,k); end;
end;
if (nargout>=5},
condnum = normv{robind);
if (nargout>=6),
% compute the error and correlation info

Appendix A: Computer Codes 84

mrmv.m — Modified Reciprocal Modal Vector (cont.)

k = (1:nl)'; k=k{:,ones(l,ni+(ni>1))); k=k{:)*;

k2 = mpv(l,:);

k2 = mpv ./ k2(ones(size{mpv,1),1),:);

k2 = [k2(:).’ ones(l,nl*{ni>1))}];

ufrf_tmp = ufrf(w_index,:)./k2(ones(nw,1),:);
err_calc = zeros(nl,ni+(ni>1));

cor_calc = zeros(nl,ni+(ni>1));

err_calc(:)=(normv(Di(:,k)-ufrf_tmp)./Di_norm(l,k)).’;
ttmp=sum{conj (Di(:,k)).*ufrf_tmp);
ttmp=real (ttmp.*conj (ttmp))./ (Pi_norm(1l,k).*normv{ufrf_tmp))."2;
cor_calc(:) = ttmp.’;
same_index = (length(w_index)==length{w_allw));
if (same_index),
same_index = all(w_index==((1l:length(w_allw))‘});:
end;
if (same_index),
err_total = err_calc;

cor_total cor_calc;

else,
err_total = zeros{nl,ni+(ni>1));
cor_total = zeros(nl,ni+(ni>1});

ww=w_allw(:,ones{(1l,nl));
Di = 1./ (ww+tlc(ones{length(w_allw),1),:)*sqrt(-1))
- 1./(ww+ l(ones{length(w_allw),1l),:)*sqgrt(-1}};

if (out_order~=0), Di=Di.*((ww*sqgrt(-1))."out_order); end;
clear (*ww’);
Di_norm = normv(Di);
ufrf_tmp = ufrf./k2(ones(size(ufrf,1),1),:);
err_total (:)={(normv(Di(:,k)-ufrf_tmp)./Di_norm(l,k)).’;
ttmp=sum(conj (Di{:,k)).*ufrf_tmp):
ttmp=real (ttmp.*conj (ttmp)) ./ (Di_norm(1l,k).*normv(ufrf_tmp}))."2;
cor_total(:) = ttmp.’;

end;

clear(‘*ufrf_tmp’', 'ttmp’);

end;
end;
end;
end;

Appendix A: Computer Codes 85

8.1.2 mrmv_test_adapt .m — Evaluation of MRMV

mrmv_test_adapt evaluates the MRMV method by testing its performance for various
changes in the system characteristics. This is done, without loss of generality, on a 6 degree of
freedom system.

mrmv_test_adapt.m

Show examples of how the output of the modal filter degrades as
the true modeshapes change, even assuming no noise in the system

Also show examples of how the modal filter still works when there
is a complete frequency shift, or modal damping ratios change

dP d¢ dP JP dP dP P IP P

This assumes complete sensor and input knowledge

9P

Copyright (c)1996, Erik A. Johnson <johnsone@uiuc.edu>, 1/20/96

FLLITLEEBLLLLLVILLLBLABBLLILBLLIILLLLABLLLIDBLLLLLBL LA LALLTLILERY
% Initial stuff
SLRRLLELLLRLLLLLLLLRRTRLBBLLALLRLLILLLLILFABLBLALLLLBLBBLLLLLLLILLS

% printer vs. screen output: set to ‘' for screen; to {‘eps’,’'ps’) for printer
1 NOTE: not ‘epsc’ or ‘psc’!!
outdev=‘"'; %str2mat(‘eps’,'pPs’):

% some parameters

n=6;
w=[0;logspace(-1,1,401)."];
realrmv = 1;

B T e R A T E R A AL £
% Ground test
FELLIILHHALLILLELBLLIBLLLLLLLELLLALLLLLBRIRLLLBLLLLIDBLHLUBBLLTRLRRS
% get the system

[a,b,c,d,M,C,K,PP,1]=ndof(n, [], 'displacement’);

% simulate the ground test; assume it’s perfect

resp = zeros{length(w),n"2);

for k=1:n, resp(:, (l:n)+(k-1)*n)=freqresp{a,b,c,d, k,sqrt(-1)*w); end;
% compute the modal filter using the “interesting” part of the freq. range
rmv = mrmv(l{(l:n),w,resp,n,w>=.1l&w<=3, ‘displacement’, realrmv)
rmv_exact = PP.’;

rmv_exact = rmv_exact * diag{sign(rmv_exact(l,:)./rmv(l,:)))
rmv_rel_err = (rmv-rmv_exact)./rmv_exact

FEETLTTLLLIBEFLLIADLFLLLFLLILLLFLLLLLALLIBLIBBLLLLLBLLLLILBLBLLBLN3
% do several tests with one element of mass matrix modified
TLEIEITHLLLLERDBRLLLILIBLHIIALLLLLEILLTALALLLLFBLLLLILLLLUIBRIBLNLRY

massfractions = [1 1.2 1.5 2];
nmfs = length{massfractions);
ufrfs = zeros(length(w),2*n*nmfs);

ufrfs2 = zeros(length{w),2*n*nmfs);
PPs = zeros(n,n*nmfs);
wn = zeros(n,nmfs);
for k=1:nmfs,
currmassfrac=ones(1l,n); currmassfrac{ceil(n/2))=massfractions(k);

[a,b,cl,d1,M,C,K,PP]=ndof(n,], ‘displacement’, currmassfrac);

(a,b,c2,d2,M,C,K,PP]=ndof (n, {], ‘acceleration’, currmassfrac);

wn(:, k) = flipud(sort(sqrt{eig(inv(M)*K}})};

PPs(:, (l:n})+(k-1)*n} = PP.’;

curresp = freqresp(a,b,[cl;c2],(dl;d2],1,sqgrt{-1)*w};

ufrfs(:, (1:n)+(k-1)*n) = curresp(:,1l:n) * rmv;

ufrfs2(:, (1:n)+(k-1)*n) = curresp(:,1:n) * PP.'

ufrfs{ :, (1:n)+{k-1+nmfs)*n) = curresp{:,n+1:2*n) * rmv;

ufrfs2(:, {1:n)+(k-1+mmfs) *n) = curresp(:,n+l:2*n) * PP.’;
end;

FEEILEHRLLAETELEELIELITLLLILALIEALLILLLLLTLLLLITLRLLLLLBLLTBUBRLRLRSY

Appendix A: Computer Codes 86

mrmv_test_adapt.m — Evaluation of MRMYV (cont.)

% plot the results
FHELTTEBLDRAVLBELALVRLLBLLLHLRILLHLLBILILVLILLAVILLPAUIVFLLRTLHIVIBHLY
% scale for comparison purposes
tmp=abs ([ufrfs(2,1:nmfs*n) ufrfs(length(w), nmfs*n+l:2*nmfs*n)]);
ufrfs =ufrfs ./tmp{ones(length(w),1),:);
tmp=abs ({ufrfs2(2,1:nmfs*n) ufrfs2(length(w),mmfs*n+l:2*nmfs*n}]);
ufrfs2=ufrfs2./tmp(ones(lengthiw),1),:);
outtypes='da‘;
pcolors = (l:nmfs).’*[1 1 1]/ (nmfs+.05);
if (all(size{outdev))), pcolors=1l-pcolors; end;
for fregnum = {1 6]};
freqshifts = (wn{fregnum, :)/wn{fregnum,massfractions==1)-1)*100;
sprintfformat = ['%’ num2str(max(diff(find([* *

sprintf('%.1f ', fregshifts)]==‘ *)))-1) *.1f\n’'];
legendText = sprintf(sprintfformat, fregqshifts);
legendText = strrep(strrep(strrep{legendText,’ ',’ ‘'},’'-','~-’},
sprintf(*\n’), sprintf('%% freq. shift\n’)};
legendText = str2strmat (legendText);
legendText = str2mat (setstr([ones(size(legendText,1),1)*‘\9\times’ legendText]),

*\times\9{ }’,’\times\9estimated’, ‘\times\9actual‘);
for k=1:length(outtypes),

outtype = outtypes(k);

% plot magnitude
clf (‘reset’};
h=loglog(w,abs{(ufrfs(:, (freqnum:n:n*nmfs)+(k~1) *n*nmfs)},

w,abs (ufrfs2(:, (freqgnum:n:n*nmfs)+(k-1) *n*nmfs)), '--");

% set the colors
for kk=1:nmfs, set(h{[kk kk+nmfs]),’'Color’,pcolors(kk,:}); end;
set (gca, 'XLim’,[.1 51);
sxlabel (*\times\12frequency [{\smaller\frac(rads}{sec}}]’);
sylabel (*\times\l2transfer function magnitude’);
% do the legend
ax=axis; l=line(ax(1l),ax(3),’'Visible’, ‘off’};
[hleg,hlines]=slegend([.71 .25], (h{l:nmfs);1;h([1 1l+nmfs])], legendText);
set (hlines{length(hlines)-2), 'Visible’, 'off’);
set (hlines(length(hlines)+(-1:0)},‘Color’,'w’};
% print magnitude plot
filename = [‘mrmv_test_adapt_lmass_’ outtype num2str (n+l-freqnum) ‘mag’};
figure(gcf); drawnow; if (~all(size{outdev))), title(filename);pause;
else, for od=1l:size(outdev,l), outd=deblank(outdev(od,:});
if stremp(outd, 'ps’), title(filename);drawnow; end;
printsto{[*-d’ outd ‘c’], [filename ‘.’ outd)); end; end:

% adjust phases for prettiness
angle_ufrfs = angle(ufrfs(:, (fregnum:n:n*nmfs)+(k-1)*n*nmfs));
angle_ufrfs(:,2:3)=unwrap(angle_ufrfs(:,2:3)});
angle_ufrfs2 = angle(ufrfs2(:, (fregqnum:n:n*nmfs)+(k-1)*n*nmfs)};
mask = angle_ufrfs(2,:)<-10*eps | angle_ufrfs(2,:)>=pi-10*eps;
angle_ufrfs(:,mask} = angle_ufrfs{:,mask)

- ones(length{w),1l)*floor(angle_ufrfs(2,mask)/pi)*pi;
mask = angle_ufrfs2(2,:)<-10*eps | angle_ufrfs2(2,:)>=pi-10*eps;
angle_ufrfs2(:,mask) = angle_ufrfs2(:,mask)

- ones(length(w),1)*floor (angle_ufrfs2(2,mask)/pi) *pi;
% plot phase
clf('‘reset’);
h=semilogx(w,angle_ufrfs,w,angle_ufrfs2, '--');
% set the colors
for kk=1:nmfs, set(h([{kk kk+nmfs]), ‘Color’,pcolors(kk,:)); end;
set (gca, ‘XLim’, (.1 5]);
sxlabel(*\times\12frequency {{\smaller\frac{rads}{sec}}]’);
sylabel (*\times\l1l2transfer function phase [(rads]’);
% do the legend
ax=axis; l=line(ax(1),ax(3),'Visible’, 'off’);
[hleg,hlines]=slegend([.33 1-.3*k], [h{l:nmfs);1;h([1 l1+nmfs])], legendText);
set (hlines{length(hlines)-2), 'Visible’, ‘off’);
set (hlines({length(hlines)+(-1:0}), ‘Color’, ‘w'});
$ print phase plot
filename = [‘mrmv_test_adapt_lmass_’ outtype num2str (n+l-fregnum) ‘pha‘];
figure(gcf); drawnow; if (~all(size{outdev)))}, title(filename);pause;
else, for od=l:size(outdev,l), outd=deblank{outdev(od,:)};
if strcmp(outd, ‘ps’), title(filename);drawnow; end;

Appendix A: Computer Codes 87

mrmv_test_adapt.m — Evaluation of MRMYV (cont.)

printsto{['-d’ outd ‘c’}, {filename .’ outd]); end; end;
end;
end;

%%
% do several tests with all elements of mass matrix modified
AFTFRTITLIBHIBEILLILTHLLLADHLLILLTLALLLBEBLLLLELLLTRLLTRABLRLBILY
massfractions = [1 1.2 1.5 2];
nmfs = length(massfractions);
ufrfs = zeros(length(w),2*n*nmfs};
ufrfs2 = zeros(length{w),2*n*nmfs);
PPs = zeros(n,n*nmfs);
wn = zeros{n,nmfs);
for k=1:nmfs,
[a,b,cl,dl,M,C,K,PP]=ndof(n,[],‘displacement',massfractions(k));
[a,b,c2,d2,M,C,K,PP]:ndof(n,[],'acceleration‘,massfractions(k));
wn(:,k) = flipud(sort(sqrt(eig(inv(M)*K))));
PPs(:, {(1:n}+(k-1)*n} = PP.’;
curresp = freqresp(a,b,[cl;c2],[dl;dZ],l,sqrt(-l)*w);

ufrfs(¢ :, (1:n)+(k-1)*n) = curresp(:,1l:n) * ormv;
ufrfs2(:, (1:n)+(k-1)*n) = curresp(:,1:n) * PP.’;
ufrfs(:, (1:n)+(k-1+mmfs)*n) = curresp(:,n+1:2*n) * rmv;
ufrfs2(:, (1:n)+(k-1+nmfs)*n) = curresp(:,n+l:2*n} * PP.’;

end;

FRELLLFLELHEITLLILARELIZLLLILLALILELLLLLBLLRLLLDLLVLLBLBLLEIB8%0R
% plot the results
FLBLEELELALEBTAERDLTLETBLELLBLHRLLLHLILAALATLLHAEBLLLIBLABLTLBRBRR4R
fregnum = 1;

% scale for comparison purposes

tmp=abs ([ufrfs{ 2,1:nmfs*n) ufrfs(length(w),nmfs*n+1:2*nmfs*n}}};
ufrfs =ufrfs ./tmpl{ones{length(w),1},:};

tmp=abs ({ufrfs2(2,1:nmfs*n) ufrfs2(length(w),nmfs*n+1:2*nmfs*n)});
ufrfs2=ufrfs2./tmp{ones (length(w),1},:);

outtypes=’da’;

pcolors = (l:nmfs).’*{1 1 1)/ (nmfs+.05);

if (all(size(outdev))), pcolors=l-pcolors; end;

freqshifts = (wn {freqnum, :) /wn {freqnum,massfraction ==1)-1)*100;
sprintfformat = ['%’ num2str(max(diff(find([® sprintf(‘%.1f °*,

fregshifts)l==' *}))-1) *.1f\n’];
legendText = sprintf (sprintfformat, freqshifts);
legendText = strrep(strrep(strrep(legendText,’ *,’ L=t

sprintf(*\n‘),sprintf('%% freq. shift\n’});
legendText = str2strmat(legendText};
legendText = str2mat(setstr([ones(size(legendText,l),1)"\9\times' legendText]),
‘\times\9{ }',’\times\9estimated’, '\times\9actual’};
for k=1:length{outtypes),
outtype = outtypes{(k});
% plot magnitude
clf(‘reset’});
h=loglog(w,abs(ufrfs(:,(freqnum:n:n*nmfs)+(k-1)*n'nmfs)),
w,abs (ufrfs2(:, (freqnum:n:n*nmfs)+ (k-1)*n*nmfs})), '-~");

% set the colors
for kk=1:nmfs, set(h([kk kk+nmfs]),’'Color’,pcolors(kk,:)}; end;
set (gca, ‘XLim‘, (.1 5]);
sxlabel {*\times\12frequency [{\smaller\frac{rads}{sec}}]’);
sylabel {*\times\12transfer function magnitude’);
% do the legend
ax=axis; l=line(ax(1l),ax(3), 'Visible’,'off’};
fhleg,hlines]}=slegend([.33 .35}, (h(l:nmfs);1;h{([1 l+nmfs])], legendText);
set (hlines(length(hlines)-2), ‘Visible’, 'off’});
set {hlines(length(hlines)+(-1:0)),'Color’, 'w’);
% print magnitude plot

filename = ['mrmv_test_adapt_allm_‘ outtype num2str({n+l-freqnum) ‘mag’);
figure(gcf); drawnow; if (~all(size(outdev))), title{filename) ;pause;
else, for od=l:size(outdev,l}, outd=deblank {outdev(od, :)):
if stremp{outd, ‘ps‘), title(filename);drawnow; end;
printsto([{‘*-d’ outd ‘c’'], [filename ‘.’ outd]); end; end;

% adjust phases for prettiness
angle_ufrfs = angle(ufrfs(:, (freqnum:n:n*nmfs)+ (k-1) *n*nmfs)) ;

Appendix A: Computer Codes 88

mrmv_test_adapt.m — Evaluation of MRMY (cont.)

angle_ufrfs(:,2:3)=unwrap{angle_ufrfs(:,2:3));

angle_ufrfs2 = angle(ufrfs2(:, (freqnum:n:n*nmfs)+ (k-1)*n*nmfs));
mask = angle_ufrfs(2,:)<-10*eps | angle_ufrfs(2, :)>=pi-10*eps;
angle_ufrfs(:,mask) = angle_ufrfs(:,mask)

- ones(length(w),1l)*floor(angle_ufrfs(2,mask)/pi)*pi;
mask = angle_ufrfs2(2,:)<-10*eps | angle_ufrfs2(2,:)>=pi-10*eps;
angle_ufrfs2(:,mask) = angle_ufrfs2(:,mask)

- ones{length(w),1l)*floor(angle_ufrfs2(2,mask)/pi)*pi;
% plot phase
clf('reset’);
h=semilogx({w,angle_ufrfs,w,angle_ufrfs2,’'--);
% set the colors
for kk=1:nmfs, set(h([kk kk+nmfs])),’'Color’',pcolors(kk, :}); end;
set (gca, *XLim’,[.1 5));
sxlabel (*\times\12frequency [{\smaller\frac{rads}{sec}})’);
sylabel (*\times\12transfer function phase [rads]’):
% do the legend
ax=axis; l=line(ax(l),ax(3),'Visible’, ‘off’);
[hleg,hlines)=slegend({.33 .5],{h(l:nmfs};1;h((1 1+nmfs])], legendText) ;
set (hlines{length(hlines)-2), 'Visible’, 'off’);
set (hlines(length(hlines)+(-1:0)), ‘Color’, 'w’);
% print phase plot
filename = ['mrmv_test_adapt_allm_‘ outtype num2str (n+l-fregnum) ‘pha’]);
figure(gcf); drawnow; if (~all(size(outdev))), title(filename);pause;
else, for od=l:size(outdev,1l), outd=deblank(outdev(od,:});
if stremp(outd, ‘ps’), title(filename);drawnow; end;
printsto{[('-d' outd ‘c’]l,[filename ‘'.' outd]); end; end;
end;

FTELEITLALBLLILIHLALABALTABLFILDHILLLBRILFLBLIIFLLLTBLTLLLBRLLULAHHLLR
% do several tests with modal damping ratio modified
LTHLSLLLBTLTRLLLBLAALVAPLBLRIIZLLBLLFLLABLLBALRLTLLLLRILVLLVLLLBLRILS
massfractions = [1 1.2 1.5 2];
nmfs = length(massfractions);
ufrfs = zeros(length(w},2*n*nmfs);
ufrfs2 = zeros(length(w),2*n*nmfs);
PPs = zeros(n,n*nmfs);
wn = zeros{n,nmfs);
for k=1l:nmfs,
fa,b,c1,d1,M,C,K,PPl=ndof(n, (], 'displacement’);
[a,b,c2,d2,M,C,K,PPl=ndof(n, (], 'acceleration’);
Zz = diag([massfractions(k):;ones(n-1,1)])*(inv{PP) '*C*inv(PP));
C = PP'*Z*PP;
a(n+l:2*n,n+l:2*n) = -inv(M)*C;
c2(:,n+1:2*n) = -inv(M)*C;
wni(:, k) = diag(z)./flipud(sort(sqrt(eig(inv{(M)*K}))}/2;
PPs(:,{(l:n)+(k-1)*n) = PP.’;
curresp = freqgresp(a,b, [cl;c2],{dl;d2]},1,sgrt(-1)*w);

ufrfs(:,(1:n)+(k-1)*n) = curresp(:,1l:n) *ormv;

ufrfs2(:,(l:n)+(k-1)*n) = curresp(:,1l:n) * PP.';

ufrfs(:,(l:n)+{(k-1+nmfs)*n) = curresp(:,n+l:2*n) * rmv;

ufrfs2(:, (l:n)+(k-1+nmfs)*n) = curresp(:,n+l:2*n) * PP.';
end;

FERLEHLEAEBLILHITBLALLULBBLBLILALILBLFUILBLLLBLBLLIBERILILLRILBLE22%
% plot the results

E e R e e e T R T T2 1
fregqnum = 1;

% scale for comparison purposes

tmp=abs ([ufrfs(2,1l:nmfs*n) ufrfs({ length(w),nmmfs*n+1:2*nmfs*n)]);
ufrfs =ufrfs ./tmp(ones{length(w),1},:};

tmp=abs ([ufrfs2(2,1l:nmfs*n) ufrfs2(length({w),nmfs*n+1:2*nmfs*n)]);
ufrfs2=ufrfs2./tmp(ones{lengthiw),1),:);

outtypes=‘da‘;

pcolors = (l:nmfs). *[1 1 1]/(nmfs+.05);

if (all(size(outdev))), pcolors=l-pcolors; end;

fregshifts = (wn{freqnum, :}/wn(freqnum, massfractions==1)-1)*100;

sprintfformat = ['%’ num2str(max(diff (find({* ' sprintf{°*%.1f °,
fregqshifts)]==' *}))-1) *.1f\n'];

legendText = sprintf(sprintfformat, freqshifts);

Appendix A: Computer Codes 89

mrmyv_test_adapt.m — Evaluation of MRMYV (cont.)

legendText = strrep(strrep(strrep(legendText,’ *,’)L, =T =),
sprintf('\n’),sprintf (‘%% damping increase\n’}));
legendText str2strmat (legendText) ;

legendText = str2mat(setstr{[ones(size(legendText,1),1}* \9\times’' legendText]},
‘\times\9{ }’, '\times\9estimated’, ’'\times\9actual‘};
for k=1:length{outtypes),
outtype = outtypes(k};
% plot magnitude
clf(‘reset’);
h=loglog(w,abs (ufrfs(:, {freqnum:n:n*nmfs)+(k-1) *n*nmfs)),
w,abs (ufrfs2(:, (fregnum:n:n*nmfs) + (k-1) *n*nmfs)), '--');
% set the colors
for kk=1:nmfs, set(h({kk kk+nmfs]),’'Color’,pcolors(kk,:)}; end;
set{gca, ‘XLim’, {.1 5]);
sxlabel (*\times\12frequency [{\smaller\frac{rads}{sec}}]’);
sylabel (*\times\12transfer function magnitude’);
% do the legend
ax=axis; l=line(ax(1),ax(3),'Visible’, 'off’);
{hleg,hlines]=slegend({.31 .75], [h(l:nmfs);1;h([1l l+nmfs])],legendText);
set (hlines(length(hlines) -2}, ‘Visible’, 'off’):

set (hlines(length(hlines)+(-1:0)),'Color‘,'w');
% print magnitude plot
filename = [‘mrmv_test_adapt_damp_’ outtype num2str (n+l-fregnum) ‘mag’];

figure(gcf); drawnow; if (~all(size(outdev))), title(filename);pause;
else, for od=1:size(outdev,l), outd=deblank(outdev(od,:));

if strcmp(outd,’'ps’), title(filename);drawnow; end;
printsto{['-d’ outd ‘c’],[filename ‘.’ outd]l): end; end;

% adjust phases for prettiness
angle_ufrfs = angle(ufrfs(;, {(freqnum:n:n*nmfs) + (k-1) *n*nmfs)) ;

angle_ufrfs(:,2:3)=unwrap{angle_ufrfs(:,2:3));

angle_ufrfs2 = angle{ufrfs2(:, (fregnum:n:n*nmfs)+(k-1)*n*nmfs));
mask = angle_ufrfs(2,:)<-10*eps | angle_ufrfs{2,:)>=pi-10*eps;
angle_ufrfs(:,mask) = angle_ufrfs(:,mask)

- ones{length(w),1)*floor(angle_ufrfs(2,mask)/pi)*pi;
mask = angle_ufrfs2(2,:)<-10*eps | angle_ufrfs2(2,:)>=pi-10*eps;
angle_ufrfs2(:,mask) = angle_ufrfs2(:,mask)

- ones(length(w),1)*floor(angle ufrfs2(2,mask)/pi)*pi;
% plot phase
clf(‘reset’);
h=semilogx(w,angle_ufrfs,w,angle_ufrfs2, ' --');
% set the colors
for kk=1:nmfs, set{h((kk kk+nmfs]),'Color’,pcolors(kk,:}); end;
set (gca, 'XLim’, {.1 5]);
sxlabel('\times\12frequency [{\smaller\frac{rads}{sec}}]’};
sylabel('\times\1l2transfer function phase [rads]’};
% do the legend
ax=axis; l=line(ax(1l),ax(3), 'Visible’, ‘off’);
[hleg,hlines)=slegend([.4 .45],[h(l:nmfs);1;h([1 1+nmfs))], legendText) ;
set (hlines(length(hlines}-2), 'Visible’, 'off’);
set (hlines(length(hlines)+(-1:0)),'Color’, ‘w'});
% print magnitude plot
% print phase plot
filename = {‘mrmv_test_adapt_damp_’ outtype num2str (n+l-fregnum) ‘pha’};
figure(gcf); drawnow; if (~all(size(outdev))), title(filename);pause;
else, for od=l:size(outdev,1l), outd=deblank(outdev(ecd,:});
if stremploutd, ‘ps’), title(filename);drawnow; end;
printsto([‘-d’ outd ‘'c’'],[filename ‘.’ outd])); end; end;
end;

Appendix A: Computer Codes 90

8.1.3 mrmvtool.m — Graphical User Interface for mrmv function

mrmvtool is a graphical user interface (GUI) front-end to mrmv. It is run just by executing
it with no arguments. Computing reciprocal modal vectors, filtering data, choosing spectral lines
to use in computing the vectors, and plotting filtered and unfiltered data can be done with

mrmvtool.

function [h,h2,h3,h4,h5,h6]=mrmvtool (action, flag,val,arg4,arg5,arg6,arg7)

% MRMVTOOL Graphical User Interface for MRMV (modified reciprocal modal filter)

MRMVTOOL provides a graphical user interface to MRMV (modified
reciprocal modal filter).

Call MRMVTOOL with no arguments to begin.

Call MRMVTOOL DEMO for a demonstration (requires mrmvtool_demo.m).

dP dP 0P JP dP dP dP P P

Requires Matlab 4.2 and the UITools toolbox from The MathWorks.
% Copyright (c)1996, Erik A. Johnson <johnsone@uiuc.edu>», 3/30/96
if (nargin==1), if strcmp(lower{action), ’'demo’), mrmvtool_demo; return; end;

% input arguments

if (nargin<l), action={); end;

if (nargin<2), flag=[]; end;

if (nargin<3), val=[]}; end;

if isempty(action), action='initialize’; end;

% some constants

mrmv_name = ‘MRMV Tool‘’;
mrmv_options = ‘MRMV Tool Options‘’;
bgcolor = [1 1 1]*.75;
bgcolor_edit = [1 1 1]*.9;
bgcolor_frame [1 1 1]*.625;
toolbarheight 0.07;
buttontextsize = 10;

plotlocs = [.06 .07 .92 .S55};
extravertspace = ,02;
indiceslineserase = ‘background’; %‘normal’
debugging = 0;

% check for existing tool
mrmv_fig = findobj(get (0, ‘Children’),’flat’, ‘Name’, mrmv_name);

% check possible actions
if (isempty(mrmv_fig) | strcmp(action, ‘initialize’)),
$ take care of existing figure
if ~isempty(mrmv_fig),
if (debugging),
close(‘all’});
else,
figure (mrmv_£fig);
axes (findobj (mrmv_£fig, ‘Type’, ‘axes’, ‘Tag', 'zoom’)}};
return;
end;
end;

% initialize figure

mrmv_fig = figure(‘Visible’, ‘off’, 'Color’,bgcolor,
‘Name '’ ,mrmv_name, ' Interruptible’, ‘ves’,
*‘Nextplot’, ‘new’, 'NumberTitle’, 'off’,
‘KeyPressFcn’, ‘mrmvtool (*'keycall’ '), .
‘WindowButtonMotionFen'’, ‘mrmvtool (* ‘moved’ ') *,
‘Units’, ‘pixels’);

set (mrmv_fig, ‘Pointer’, ‘watch’); drawnow;

if (debugging & (exist(‘paperaxes’)>1l)), paperaxes; end;

colormap (gray(17));

fig_ar=get (mrmv_fig, 'Position’};

if (fig_ar(3)==0), fig_ar=1; else, fig_ar=fig_ar(4)/fig_ar(3); end;

end;

Appendix A: Computer Codes 91

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

% some callback functions

computech = {‘mrmvtool('’compute’’’
‘L,eval (mrmvtool (' ‘getstr’’,'‘unfiltered '), ' "’exx’"’'*"')"
,eval (mrmvtool (‘getstr‘’,’ ‘fregs’’ y,*"’'‘'"'exrr’ ')’
‘,eval (mrmvtool (* ‘getstr’’,’‘indices’’ y,*"’'’"'exrr‘*"’"* ")’
‘,eval (mxmvtool (* 'getstr’’,’ ‘nrefs’’ Y, *t'exr’)y
‘L,eval (mxrmvtool (® 'getstr’’,’'poles’’ Y, "' rterr’)
1
plotch = [‘mrmvtool(*‘plot’’'’ ...
+,eval (mrmvtool (' ‘getstr’’,’‘unfiltered’’), "' ‘exxr’ ‘""" ")’
‘,eval (mrmvtool (' 'getstr’’, ' 'freqgs’’ Y, rtexrrt)
‘,eval (mrmvtool (' 'getstr’‘,’‘indices’’ Y, rrexyt ity

)yl

% initialize menus

mrmv_menu = uimenu{mrmv_fig, ‘Label’, ‘MRMVTool’};

uimenu {mrmv_menu, ‘Label’, ’Plot’,’'Interruptible’, ‘yes’, ‘CallBack’, plotcb);

uimenu {mrmv_menu, ‘Label’, ‘Compute RMVs’, ‘Interruptible’, ‘yes’, ‘CallBack’, computecb);
uimenu (mrmv_menu, ‘Label’, 'Zoom In’, 'Interruptible’,‘yes’, ...

‘Separator','on','CallBack','mrmvtool("zoom","in")');
uimenu {mrmv_menu, ‘Label’, ‘Zoom Out’, 'Interruptible’, ‘ves’,
‘CallBack’, ‘mrmvtool(‘‘zoom’’',’‘out’’)’);
uimenu (mrmv_menu, 'Label’, 'Restore Limits’, ‘Interruptible’, ‘ves’,
‘callBack’, ‘mrmvtool (‘' ‘zoom’’',’ 'restore’’)’);
uimenu (mrmv_menu, ‘Label’, ‘Options...’, 'Interruptible’, ‘yes’,
‘Separator’,’'on’, 'CallBack’, ‘mrmvtool(*‘options’’)’};
uimenu (mrmv_menu, ‘Label’, 'Exit MRMV’,’Interruptible’,‘yes’,
‘Separator’, ‘on’, ‘CallBack’, ‘mrmvtool(*’exit’’)’);
drawnow;

% initialize axes

axl = axes(‘Position’,plotlocs, 'XColor’,‘k’, ¥Color’, ‘'k*, ‘Color’,'w’,
‘DrawMode’, 'fast’, ‘box', ‘on’, ‘XScale’, ‘log’, ‘YScale’, 'log’,
‘Interruptible’, ‘yes’, ‘ButtonDownFcn', [‘mrmvtool (' ‘choose’’, '
‘eval {(mrmvtool (' ‘getstr’’,’’'indices’’),''’"'‘exx’'’'’'''"}}’],
‘Tag’, ‘ax1l‘);

xlabel (‘Frequency [rads/sec]');

hl=[get (axl, ‘XLabel’) ;get{axl, ‘YLabel’)];

set (hl, 'FontWeight’, ‘bold’, ‘FontSize’,round(get(hl (1), ‘FontSize’'}*.8}));

% bar above plot
p = [plotlocs{l) plotlocs(2)+plotlocs(4)+extravertspace 0 0]
+ toolbarheight*[0 0 fig_ar 1};
ptop = p(2}+p(4);
btngroup(mrmv_fig,'GroupID',’zoom’,'EuttonID',’zoom','PressType',’toggle’,

‘IconFunctions’, ‘mrmvtool (' ‘btndraw’’,’‘zoom’’) ",
‘CallBacks’, ‘'mrmvtool(*‘btndo’’,’‘zoom’’)’,
*Orientation’, "horizontal’, ‘Position’,p};

pll) = p(l) + p(3) + extravertspace*fig_ar;

p(3) = plotlocs(l)+plotlocs(3) - p(l);

uicontrol (mrmv_fig, ‘Style’, 'frame‘, 'Units’, ‘normalized’, 'Position’,p,
‘BackgroundColor’,bgcolor_frame);
fractvertspace = .2*toolbarheight;
horizspace = fractvertspace*fig_ar;
p = p + horizspace*{l 0 -2 0] + fractvertspace*[0 1 0 -2];
buttonheight = p(4);
uicontrol {mrmv_fig, 'Style’, ‘pushbutton’, ‘Units’, ‘normalized’, .
‘Position’, [p(1)+p(3)*0.00 p(2) p(3)*.1 p(4)], 'String’, ‘Plot’,
CallBack’,plotcb, 'Tag’, 'plot);
xlabels = str2mat('Frequency [rads/sec]’,’'Frequency [rads/sec}’,
‘Mode’, ‘Mode’, 'Mode’, ‘Mode’, ' Sensor Number’) ;
uicontrol {mrmv_£fig, ‘Style’, ‘popupmenu’, ‘Units‘, ‘normalized’,
‘HorizontalAlignment’, 'left’, .
‘Position’, (p(1)+p(3)*0.1 p(2) p(3)*.325 p(4)],'Tag’, ‘popup’,
‘String’, ['Unfiltered Data|Filtered Data|UFRF Error (indexed)|’
‘UFRF Error (all) |UFRF Correlation (indexed) |’
‘UFRF Correlation (all) |RMV Matrix’], .
‘UserData‘, [(1 1;1 1;0 0;0 0;0 0;0 0;0 0] xlabels]);
uicontrol (mrmv_fig, 'Style’, ‘pushbutton’, 'Units’, ‘normalized’,

Appendix A: Computer Codes 92

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

‘Position’, [p(l)+p(3)*0.475 p(2) p(3)*.2 pi{4)],
‘String’, ‘to workspace as’, ‘CallBack’, ‘eval (mrmvtool (' ‘toworkspace’’)})’);
uicontrol (mrmv_£fig, 'Style’, ‘edit’, ‘Units’, ‘normalized’,
‘HorizontalAlignment', ‘left’, ...
‘Position’, [p(1l)+p(3)*0.675 p(2) p(3)*.325 p(4)],'String’,’’,
‘BackgroundColor’,bgcolor_edit, ‘Tag’, 'toworkspace') ;
% top stuff
p = [plotlocs(l) ptop+extravertspace plotlocs(3) l-extravertspacel;
p(4) = pl4) - p(2);
uicontrol (mrmv_£fig, 'Style’,’'frame’, 'Units’, ‘normalized’, 'Position’,p,
‘BackgroundColor’,bgcolor_frame);
nxy = [2 3];
vs = (p(4)-nxy(2)*buttonheight) / (nxy(2)+1);
p=p + vs¥{fig_ar 1 -fig_ar -1};
p(3:4) = p(3:4) ./ nxy;
dxy = p(3:4);
p(3:4) = p(3:4) - vs*(fig_ar 1];
textfactors = [.16 .7];
uicontrol (mrmv_£fig, ‘Style’, ‘text’, 'BackgroundColor’,fbgcolor_frame,
‘String’, ‘Unfiltered Data:’, ‘Units’, 'normalized’,
‘Position’,p.*[1 1 .32 textfactors(2)] ...
+[(dxy.*{0 2)+p(3:4).*[0 textfactors(l)] O 0],
‘HorizontalAlignment’, ‘right’);
uicontrol (mrmv_fig, 'Style’, ‘edit’, ‘BackgroundColor’,K bgcolor_edit,
‘HorizontalAlignment’, ‘left’,
‘String’,’[]’,'Units’, 'normalized’, 'Tag’, ‘unfiltered’, ...
‘Position’,p.*[1 1 2/3 1)}+[dxy.*[0 2)+p(3:4).*[1/3 0] O 0]);
uicontrol (mrmv_fig, ‘Style’, ‘text’, ‘BackgroundColor’,h bgcolor_frame,
*String’, 'Frequencies:’, ‘Units’, ‘normalized’,
‘Position’,p.*[1 1 .32 textfactors(2)] ...
+[dxy.*(0 1)+p(3:4).*[0 textfactors(l)] O 0],
‘HorizontalAlignment’, ‘right’);
uicontrol (mrmv_£fig, 'Style’, ‘edit’, 'BackgroundColor’,bgcolor_edit,
‘HorizontalAlignment’, ‘left’,
*String’,’[]l’,'Units’, 'normalized’, 'Tag’, 'fregs’, ...
‘Position’,p.*[1 1 2/3 1}+[dxy.*[0 1)+p(3:4).*(1/3 0) 0 0]});
uicontrol (mrmv_fig, 'Style’, ‘text’, ‘BackgroundColor’,h bgcolor_frame,
‘String’,'# of Refs.:’,’Units’, 'normalized’,
‘Position’,p.*[1 1 .32 textfactors(2)] .
+[dxy.*[0 0]+p(3:4).*[0 textfactors(l)] 0 0],
‘HorizontalAlignment’, ‘right’);
uicontrol (mrmv_£fig, 'Style’, ‘edit’, 'BackgroundColor’, bgcolor_edit,
‘HorizontalAlignment’, ‘left’,
*String’,‘1l’,’'Units’, '‘normalized’, ‘Tag’, ‘'nrefs’, ...
‘Position’,p.*[1 1 2/3 1}+[dxy.*{0 0]+p(3:4).*(1/3 0] 0 0]);
uicontrol (mrmv_£fig, ‘Style’, 'text’, ‘BackgroundColor’, bgcolor_frame,
‘String’, ‘Freq. Indices:’, ‘Units’,’normalized’,
‘Position’,p.*{1 1 .32 textfactors(2)] ...
+{dxy.*[1 2]+p{3:4).*{0 textfactors(1l)] 0 01},
‘HorizontalAlignment’, ‘right’);
uicontrol (mrmv_£ig, 'Style’, 'edit’, ‘BackgroundColor’, bgcolor_edit,
‘HorizontalAlignment’, 'left’,
‘String’,’’'‘’all’‘’,'Units’, ‘normalized’, ‘Tag’, 'indices’, ...
‘Position’,p.*[1 1 2/3 1]+[dxy.*[1 2]+p(3:4).*[1/3 0] 0 0));
uicontrol (mrmv_fig, 'Style’, ‘text’, ‘BackgroundColor’, bgcolor_frame,
‘String’, ‘Poles:’, 'Units’, 'normalized’,
‘Position’,p.*[1 1 .32 textfactors(2)] ...
+[dxy.*(1 1)+p(3:4).*[0 textfactors(l)] 0 0],
‘HorizontalAlignment', 'right’);
uicontrol (mrmv_fig, ‘Style’, ‘edit’, 'BackgroundColor’,bgcolor_edit,
‘HorizontalAlignment’, ‘left’,
‘String’,’{]’,’'Units’, ‘'normalized’, ‘Tag’, ‘poles’, ...
‘Position’,p.*[1 1 2/3 1]+[dxy.*[1 1)+p(3:4).*[1/3 0] 0 01);
p(l) = pl{l) + dxy(l);
button_labels = str2mat(‘Compute RMVs’, '‘Options...’, Exit’};
button_cbacks = str2mat(computecb ...
, ‘mrmvtool (*‘options‘ ‘)
,‘mrmvtool (' ‘exit’ ‘)’
yi
button_tags = str2mat (‘'compute’,’’,"’"};

Appendix A: Computer Codes 93

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

nx = size(button_labels,1);

button_widths = zeros(nx,1);

% define the font and size

% these are hard coded on most platforms in

% Version 4, but may vary from site to site.

c = computer;

if all(c(l:2)=="MA"), fontsize=10; fontname='Geneva’;
elseif all(c(l:2)=='PC’), fontsize={]}; fontname='’;

else, fontsize={); fontname='‘;

end;

% set them up
oldax = get(mrmv_fig, ‘CurrentAxes’});
set (mrmv_£ig, 'CurrentAxes’ ,axl);
axlims = axis;
t_junk = text (axlims (1) ,axlims (3),deblank (button_labels(1l,:}));
set (t_junk, ‘Units’, ‘pixels’}:
if ~isempty(fontname), set(t_junk, 'FontName’, fontname); end;
if ~isempty(fontsize), set{t_junk, ‘FontSize’, fontsize); end;
ext = get(t_junk, ‘extent’);
button_widths{1l) = ext(3);
for kk=2:nx,
set (t_junk, ‘String’,deblank(button_labels(kk,:)})};
ext = get{t_junk, ‘extent’};
button_widths(kk) = ext(3};
end;
delete(t_junk);
set (mrmv_£fig, ‘CurrentAxes’,oldax);
figpos = get(mrmv_£fig, ‘Position’);

extrawidth = figpos(3) * (p(3)-vs*fig_ar*(nx-1}) - sum(button_widths) ;
button_widths = button_widths + extrawidth / nx;

button_widths = (p(3)-vs*fig_ar*(nx-1)) *button_widths/sum(button_widths);
for kk=1:nx,

p{(3) = button_widths(kk);

uicontrol (mrmv_fig, ‘Style’, ‘pushbutton’,
'String’,deblank (button_labels(kk,:)),
‘callBack’,deblank(button_cbacks(kk, :}),
‘Tag’,deblank (button_tags(kk,:)},
‘Units’, ‘normalized’, 'Position’,p);

p(1) = p{l) + p(3) + vs*fig_ar:

end;
% set up default properties
mrmvtool {‘set’, ‘oldunfiltered’, '’}

mrmvtool (*set’, ‘RMVMatrix’,’’);
mrmvtool(‘set’, 'MPVMatrix’, ' ');
mrmvtool('set’, 'Filteredbata’, ’'’);
mrmvtool (‘set’, ‘UFRFErrorindexed’,’'’};
mrmvtool (‘set’, 'UFRFErrorall’, '):
mrmvtool (*set’, 'UFRFCorrelationindexed’,’’);
mrmvtool{‘set’, 'UFRFCorrelationall’,’*);
% anything else?
if (debugging),
% some dummy data
set (findobj (mrmv_£fig, ‘Style’, ‘edit’,‘Tag’, ‘unfiltered’),
‘string’,’ (1 5:2 6:3 7;4 8;4 9;3 8;2 6:1 8]');
set (findobj (mrmv_fig, '‘Style’, ‘edit’, 'Tag’, 'freqgs’), String’,’1:8");
end;
% make it visible
figure{mrmv_£fig);
ax=findobj (mrmv_fig, 'Type’, ‘axes’, ‘Tag’, 'zoom’);
if ~isempty(ax), set(mrmv_fig, 'CurrentAxes’,ax); end;
whitebg (mrmv_£fig, [1 1 1)*.75);
set (mrmv_fig, 'Pointer’, ‘arrow’, 'Visible’,‘on’};

elseif strcmp(action, ‘exit’),
allfigs = findobj(get(0,‘Children’), 'flat’, 'Type’, 'figure’);
myfigs = mrmvtool(‘get’, ‘subfigs’);
for k=myfigs(:).‘, if any(k==allfigs), delete(k); end; end;
close{mrmv_£ig);
if (debugging), mrmvtool; end;

Appendix A: Computer Codes 94

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

elseif strcmp({action, ‘getstr’),
if isempty(flag),
h = [];
else,
h = get (findobj (mrmv_fig, ‘Tag’, flag), 'String’});
end;

elseif strcmp(action, ‘setstr’),
if isstr(val),

str = val;
elseif isempty(val),
str = *[}";
elseif (all(val(:)==round(val(:))}) & all(val(:)>=0) & any(size(val)>2)),
trans=0; if (size(val,2)==1), trans=1l; val=val.’; end;
val = [val.’;-2*ones(l,size(val,1))}];

val = val(:).’;
ii = ([diff(val) 0])==1);
ii = ii & ([1 Qiff(ii)]==0);

val(ii) = -3 + O*val(ii);
ii = i1 & ({1 Aiff(ii))==0);
val(ii) = [};
str = sprintf('%.0f *',val);
str = strrep{strrep(str,’ -3 *,’:")," =2 *,’';'};
str (length(str}) = [];
str = ['(* str ‘]‘};
if (trans), str=[str *.’’'’]; end;
else,
str = mat2str(val);

end;
set (findobj (mrmv_fig, ‘Tag’',flag), ‘String‘,str);

elseif stremp(action, ‘getfig’),
h = mrmv_f£fig;

elseif strcmp(action, ‘popup’),
popup = findobj (mrmv_fig, 'Tag’, 'popup’);
if isempty (popup) .,
error ("MRMVTOOL cannot find its popup menu.’);

end;

v = get (popup, 'Value');
minval = get (popup, ‘Min’});
maxval = get (popup, ‘Max’);

if (v<minval | v>maxval),
error (*‘MRMVTOOL seems to have a corrupted popup menu. ') ;
end;
if isempty({flag),
h = get{popup, 'Value‘);
else,
if isstr(flag),
if (size(flag,2)==1), flag=flag.’; end;
if (size(flag,l)~=1),
error ([‘"MRMVTOOL requires a string row vector °
‘when setting the popup menu value.']};

end;

s = lower(str2mat(flag,get{popup,’'String’)));
s(s==0) = s{s==0)+"' ‘;

ii = find(all((ones{size(s,1),1)*s(l,:)==s)."));

if (length(ii)==1),
for k=1:size(s,1),

s2 = s(k,:);
s2(s2==' ‘|s2=='("|s2==")') = [];
s(k,:) = setstr([s2 ' ‘*ones(l,size(s,2)-length(s2)}1);
end;
ii = find(all{(ones{size(s,1),1)*s{1,:)==s).’});
end;
ii(1) = [1:

if all(size(ii)),
flag = min(ii)-1;
else,
error (["MRMVTOOL does not recognize ‘'‘’

Appendix A: Computer Codes 95

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

flag *’'' as a valid popup menu value.']);
end;
elseif (flag<minval | flag>maxval),
error{['MRMVTOOL requires the popup value to be in [®
num2str {(minval) ‘',' num2str (maxval) ‘'].‘1);
end;
set (popup, 'Value’, flag);
end;

elseif strcmp(action, ‘toworkspace’},
str = mrmvtool (‘getstr’,‘toworkspace’});

if ~isempty(str), str=[str '=']); end;

disp([str ‘mrmvtool(‘'’getplotdata’’,...):'1);

h = {str ‘mrmvtool('’'getplotdata’’’ ...
+,eval (mrmvtool (' ‘getstr’’,’‘unfiltered’’},’' '’ ’err’'’''’' '}’
‘,eval (mrmvtool (' ‘getstr’’,’ freqs’'’ Yy, terxt)
', eval (mrmvtool (' ‘getstr’’,’‘indices’’ y,'**rr'rexr’)’
L1Yit)

elseif strcmp(action, ‘checkrefilter’),
% get the data (flag=unfiltered,val=freqs,arg4=indices,argS=errordialog)
h=0;
oldflag = mrmvtool('get‘,‘oldunfiltered’):
if any(size(oldflag)~=size(flag)),
neednew = 1;
else,
neednew = any(flag(:)~=oldflag(:)};
end;
if (neednew), % need to recompute
% get the filters
rmv = mrmvtool (‘get’, ‘RMVMatrix‘);
mpv = mrmvtool{‘get’, 'MPVMatrix‘};
[no,nl] = size(rmv);
% check the data first
mrmvtool { *checkparse’, ‘unfiltered’, flag);
if any([no nl)==0),

errmsg = ‘MRMVTOOL cannot filter the data until the RMVs are computed.’;
if (argS),
mrmvtool (‘error’, ‘error’,errmsg);
else,
error {errmsq) ;
end;
h=1;
elseif (rem(size(flag,2),no)~=0},
errmsg = ['MRMVTOOL requires that the # of columns of the Unfiltered *

‘Data be a ' sprintf(‘\n’) ‘multiple of the # of outputs *®
‘when the RMVs were computed.‘];:
if (arg5),
mrmvtool{‘'error’, ‘error’,errmsq);
else,
error (errmsg) ;
end;
h=1;
else,
% recompute the uncoupled frfs
ni = size(flag,2)/no;
[um,un] = size(flag);
ufrf=stack2sbys (sbys2stack{flag,un/no)*rmv,un/noj;
mpvWeighted = (];
if (ni>l1 & size(mpv,l)==ni),
kl=(1l:nl:(nl*ni))";

k2=1:nl;

k=kl(:,ones(1l,nl))+k2(ones(ni,1),:}-1;

k=k(:)";

k2=k2 (ones{um,1),:); k2=k2(:)";

utmp=zeros (um,nl);
utmp(:)=sum(sbys2stack(ufrf(:,k),size(k,2)/ni)’.*mpv(:,kZ))’;

mpvWeighted = size(ufrf,2)+(1l:nl);
ufrf={ufrf utmp]; clear('utmp’};
end;

Appendix A: Computer Codes 96

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

% save them again
mrmvtool {‘set’,'oldunfiltered’, flag);
mrmvtool (‘set’, 'FilteredData’ ,ufrf);
mrmvtool { ‘set’, ‘MPVWeightedFilteredData’,mpvWeighted);
end;
end;

elseif strcmp(action, ‘getplotdata‘),
% get the data (flag=unfiltered,val=freqs,arg4=indices)
dialogonerror = (nargout>=6) | (nargin>=5};
popup = findobj (mrmv_£fig, ‘Tag’, ‘popup’);
if isempty (popup),
error (*MRMVTOOL cannot find its popup menu. ‘);

end;

v = get (popup, 'Value’);

if ((v<get(popup, ‘Min‘)) | (v>get(popup, ‘Max’)))},
error (*“MRMVTOOL seems to have a corrupted popup menu.‘);

end;

logs = get (popup, 'UserData’);

logs = logs(v,:};

hé6=0;

s = get(popup, 'String’);
s = deblank(s(v,:));
ss = S;
s{(s==' ") [(s=="(*)]|(s==")")) = []:
if (v==1), % unfiltered
mrmvtool (‘checkparse’, ‘unfiltered’, flag);
else,
if (v==2), h6=mrmvtool(‘checkrefilter’, flag,val,arg4,dialogonerror); end; $filtered
flag = mrmvtool(‘get’,s);
end;
if (~hé6 & isstr(flag)),
errmsg = [‘'MRMVTOOL has not yet computed ‘‘’ ss “'‘.’'];
if (dialogonerror),
mrmvtool (‘error’, ‘error’,errmsg};

else,
error (errmsg);
end;
hé=1;
end;
% compute outputs
h=flag;
if (h6),
h2 = {};

elseif (v==1|v==2), $frequency-based data
mrmvtool { ‘checkparse’, ‘freqs’,val);
if (min(size(val))>1),
errmsg = ‘MRMVTOOL requires the frequencies be a vector, not a matrix.’
if (dialogonerror),
mrmvtool (*error’, 'error’,errmsg) ;

else,
error (errmsg) ;

end;
h = [];
hé = 1;

end;

h2 = val(:);

else,

h2 = (1l:size(flag,1)).’;
% {err,cor)_{index, total} are (nl)-by-(ni+(ni>1))
% rmv is (no)-by-(nl)
% mpv is (ni)-by-(nl)
end;
h3=logs;
hd=v;
hS=popup;

elseif strcmp(action, 'plot’),
if (nargin==1),
h = get(findobj (mrmv_fig, ‘Tag’, ‘plot’}, ‘CallBack’);

Appendix A: Computer Codes 97

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

return;
end;
% check if currently log scale
ax = findobj (mrmv_£fig,‘Tag’, ‘axl’);
if isempty{ax), error ('MRMVTOOL cannot find its axes.’); end;
waslog = [strcmp (get(ax, 'XScale‘),’log’) strcmp (get (ax, ‘YScale’), 'log’}]);
% check o0ld log/linear scale
oldv = mrmvtool(‘get’,‘oldv’};
if ~isempty(oldv),

alllogs = get{popup, 'UserData’);

if (oldv>=l&oldv<=size{alllogs, 1)),

alllogs{oldv,1:2) = waslog;

end;

set {popup, ‘UserData’,alllogs});
end;
% get the data (flag=unfiltered,val=freqs,arg4=indices)
[pd, x, logs,v,popup,err} = mrmvtool { ‘getplotdata’, flag,val,argd);
if (err), return; end:
% check it
if isempty(pd),

mrmvtool (‘error’, ‘error’, ...

'"MRMVTOOL cannot plot what is empty or not yet computed. ') ;

return;
elseif isempty({x),

x = (l:size(pd,1l)).’;
elseif (size(x,l)~=size(pd, 1)),

mrmvtool (‘error’, ‘error’, ..

('MRMVTOOL requires that the Unfiltered Data and the’

sprintf(‘\n’) ‘Frequencies have the same # of rows.’]);
return;
end;
% handle absolute values
warn = ‘‘;
if | :=1I ==2),

pd=abs (pd); %we are only doing magnitude plots here
elseif (v==7 & ~isreal(pd)),
pd=abs (pd) ;
if mrmvtool{‘get’, 'showwarnings’},
warn = ‘MRMVTOOL warning: the RMVs are complex; plotting abs(RMVs).';
end;
end;
% do we have a MPV-weighted filtered frf?
ii = (1;
if (v==2),
ii = mrmvtool{‘get’, ‘MPVWeightedFilteredData’);
end;
% plot it
oldfig = gcf;
figure (mrmv_£ig);
oldax = gca;
axes (ax);
delete(get (ax, ‘Children’));
l-= line(x,pd,'ButtonDownFcn‘,get(ax,‘ButtonDownFcn'));
if all(size(ii)), set(l(ii),'Color',mrmvtool(‘get’,'MPVWeightedColor')): end;
set(get(ax,’XLabel'),’String',setstr(logs(3:1engch(logs))));
if (v>2), set(ax,’'XTick’,x); else, set (ax, ‘XTickMode’, 'auto’); end;
mrmvtool (‘set’, ‘lastplotted’ ,v);
% handle log scales
waslog = [strcmp (get {ax, 'XScale’), 'log’) strcmp (get (ax, 'YScale’), 'log’)1;
if (waslog(l)~=logs (1)),
if {logs(1l)), s='log’; else, s='linear’; end;
set {ax, ‘XScale’,s);
end;
if (waslog(2)~=logs(2)}),
if (logs(2)), s=’'log’; else, s='linear’; end;
set(ax, ‘YScale’,s):
end;
% handle limits
if (v>2),
xlims = [l-min(l, (max{x)-1)}/10) max (x)+min{1l, (max(x)-1)/10)1;

Appendix A: Computer Codes 98

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

else,
xlims = [min(x) max(x)];
end;
set (ax, 'XLim’,xlims, ‘YLimMode’, ‘auto’);
set (get (ax, 'ZLabel’), 'UserData’, [1);
% clean up
axes (oldax) ;
figure(oldfigqg);
ax=findobj (mrmv_£fig, ‘Type’, ‘axes’, 'Tag’, 'zoom’);
if ~isempty(ax), set(mrmv_fig, 'CurrentAxes’,ax); end;
if all(size{warn)), mrmvtool(‘error’,’'warning’,warn}; end;

elseif strcmp(action, ’centerloc’},
if (all(size(flag)) & ~isstr{flag)),
flag = flag(l};
if (flag==0), flag=’'mouse’;
elseif (flag==1), flag='mouse’;
elseif (flag==2), flag='mrmvtool’;

else, flag='screen’;
end;
end;
flag = lower (flag);
if strcmp (flag, ‘screen’), pos=get (0, ‘ScreenSize’) ;pos=pos(1:2)+pos(3:4)/2;
elseif stremp(flag, ‘mrmvtool’), pos=get(mrmv_£fig, ‘Position’);pos=pos(1:2)+pos(3:4)/2;
else, pos=get {0, 'PointerLocation’);
end;
h = pos;

elseif strcmp(action,’'options’) & isempty(flag),
% set up and display the options dialog
oldfig = gcf;
oldpointer = get(oldfig, 'Pointer’);
if ~strcmp(oldpointer, ‘watch’), set{(oldfig, 'Pointer’,’watch’); end;
dlg = findobj('Type’,’figure’, 'Name’,mrmv_options);
if ~isempty(dlg).

figure{dlg):
else,
labels = str2mat{
str2mat (‘Data Output Type’,’text’,’0’,°’)

,str2mat {‘displacement’, ‘'radiobutton’, 1’,‘disp’)
,str2mat (‘velocity’, 'radiobutton’,’l’, ‘vel’) .
,str2mat (*acceleration’, ‘radiocbutton’,’l’, ‘accel’)

,str2mat(*’,*’,‘0’, ") ...
,str2mat (‘Restrict RMVs to Real Numbers’, ‘checkbox’,’-1’, ‘'realrmv’)
,str2mat (‘Display Warnings’, ‘checkbox’,’-1‘, ‘warnbox’)
)i
{m,n] = gize(labels);
m = m/4;
tags = labels(4:4:4%*m, :);
indents = setstr{(ones{m,1)*’ ‘' labels(3:4:4*m,:}}).";
indents = eval(['[* indents(:).’ *}.’'"']};
styles = labels(2:4:4*m,:);
labels = labels(1:4:4*m,:};
nchars = n - sum{cumprod(fliplr(labels).’'=="’ ‘|fliplr(labels).’==0)).";

% some size parameters
mCharacterWidth = 7;

Voff = 5;

layout

mPushbuttonWidth = mStdButtonWidth;

mPushbuttonHeight = mStdButtonHeight:

mIndentwidth = mFrameToText;

mCheckBoxWidth = mFrameToText;

mLineHeight = max(mLineHeight,mPushbuttonHeight);
mOKString = mOkButtonString;

mCancelString = mCancelButtonString;

% compute size of dialog box
FigWH = [({max(nchars*mCharacterWidth ...
+(indents>0) . *indents*mIndentWidth ...
- (indents<0) .*indents*mCheckBoxWidth))
(m* (mLineHeight+Voff)-Vof f+mPushbuttonHeight+

Appendix A: Computer Codes 99

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

4*mFrameToText+3*mEdgeToFrame)] ;
FigWH(1l) = max (FigWH (1), 2*mPushbuttonWidth+2*mEdgeToFrame+3*mFrameToText) ;
% compute location
pos = mrmvtool{‘'centerloc’);
pos = [pos~FigWH/2 FigWH];
% create the figure
DefUIBgColor = get{0, ‘'DefaultUIControlBackgroundColor’);
dlg = figure(‘NumberTitle',’off’,'Name',mrmv_options,'Units',’pixels’,
‘Position’,pos, ‘NextPlot’, ‘new’, ‘MenuBar’, ‘none’,
‘Color’,DefUIBgColor, ‘Visible’, ‘off’};
mrmvtool (*set’, ‘subfigs’, [mrmvtool{‘get’, ‘subfigs’);dlgl));
% make the 2 frame uicontrols
UIPosl = mEdgeToFrame*{1 1 -2 0] + [0 O FigWH(1) mLineHeight+2*mFrameToText];
set(uicontrol(dlg,'Style’,'frame','Position‘,UIPosl),'Units',‘normalized');
UIPos2 = [UIPos1(1:3)+[0 UIPosl(4)+mEdgeToFrame 0]
m* (mLineHeight+Voff) -Voff+2*mFrameToText];
set(uicontrol(dlg,'Style','frame','Position',UIPosz),'Units','normalized');
% make the OK and Cancel buttons
Hspace = (FigWH(1l) - 2*mPushbuttonwidth) / 3;
set(uicontrol(dlg,'Style‘,’pushbutton',‘String',mOKString,
‘callback’, ‘mrmvtool (‘‘options’’, ‘OK’')",
‘Position’, [UIPosl(1:2)+[Hspace mFrameToText]
mPushbuttonWidth mPushbuttonHeight]), ‘Units’, ‘normalized’);
set (uicontrol {dlg, ‘Style’, ‘pushbutton’, 'String’ ,mCancelString,
‘*Callback’, 'mrmvtool("optlons","Cancel")/ ..
‘Position’, (UIPosl(1l: 2)+[2*Hspace+mPushbuttonW1dch mFrameToText]
mPushbuttonWidth mPushbuttonHeight]), ‘Units’, ‘normalized’};
% set up the rest
UIPos2 = [UIPos2(1l:2)+(mFrameToText m* (mLineHeight+Voff)+Voff/2+mFrameToText]
UIPos2(3)-2*mFrameToText mLineHeight];
for kk=1:m,
if ~isempty(deblank(labels(kk,:}}),
indent = max(0,indents (kk))*mIndentWidth;
UIPosl = UIPos2 + [indent -kk* (mLineHeight+Voff) -indent 0];
tag = deblank(tags(kk,:)};
if ~isempty(tag),
cback = [‘mrmvtool(‘‘options’’,*‘’’ tag ‘"’}’'):
else,
cback = *’;
end;
set (uicontrol (dlg, 'Style’,deblank(styles(kk,:)},
'String‘,deblank{labels(kk,:}), ...
‘pPosition’,UIPosl, ‘Tag’, tag, 'Callback’, cback,
‘HorizontalAlignment'’, ‘left’)}),’Units’, ‘normalized’);
end;
end;
end;
% set values
mrmvtool (‘options’, ‘realrmv’ ,mrmvtool(‘get’, ‘realonly’));
mrmvtool (‘options’, ‘warnbox’,mrmvtool (‘get’, 'showwarnings’});
outtype = mrmvtool(‘get’, 'outtype’);
mrmvtool (‘options’, ‘disp’, outtype==0);
mrmvtool (‘options’, ‘vel’, outtype==1};
mrmvtool (‘options’, ‘accel’,outtype==2);
% make it visible
if ~strcmp{oldpointer, ‘watch’}, set (01dfig, 'Pointer’,oldpointer); end;
set (dlg, 'Visible’, 'on’);

elseif strcmp(action, ‘options’),

% handle options dialog items

dlg = findobj (*Type’, ' figure’, ‘Name’,mrmv_options);

obj = findobj{dlg, 'Tag’,flag);

if isempty(dlqg),
mrmvtool (*options’);

elseif stremp(flag, ‘OK’}),
mrmvtool(‘set’,'realonly‘,mrmvtool(‘options’,'realrmv',’get')—:O);
mrmvtool(‘set','showwarnings‘,mrmvtool(‘options',‘warnbox','get’)~=0];

if (mrmvtool (‘options’, ‘disp’, ‘get’)~=0), outtype=0;
elseif (mrmvtool(‘'options’,‘vel’, ‘get’)~=0), outtype=1l;
elseif (mrmvtool(‘options’,‘accel’, ‘get’)~=0), outtype=2;

Appendix A: Computer Codes 100

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

else, outtype=[];
end;
mrmvtool (*set’, ‘outtype’, outtype);
set (dlg, ‘Visible’, ‘off’};
figure(mrmv_£fig):
elseif strcemp(flag, 'Cancel’),
set (dlg, 'Visible’, 'off’);
figure (mrmv_£fig);
elseif stremp(flag, 'realrmv‘) | stremp({flag, ‘warnbox’},
if isempty(obj).
error (*“MRMVTOOL has a corrupted options dialog.’};
elseif strcmp(val, ‘get’),
h = get(obj, ‘Value’);
else,
if ~isempty(val), set{obj,‘Value’,val); end;
end;
elseif strcmp(flag,’disp’) | stremp(flag,‘vel’) | strcmp(flag, ‘accel’},
if isempty{obj),
error (‘MRMVTOOL has a corrupted options dialog.’);
elseif strcmp(val,‘get’},
h = get{obj, ‘Value’};
elseif isempty(val),
val = get{(obj, ‘Value’)~=0;
if (~val),
set {obj, ‘Value’,~val);
else,
s = str2mat(flag, ‘disp’, ‘vel’, ‘accel’};
ii = find(all((ones(size(s,1),1)*s(1,:)==8).")};
s(ii,:) = (1:
mrmvtool (*options’,deblank(s(l,:))},~val);
mrmvtool (‘options’,deblank(s(2,:)),~val);

end;
else,
set (obj, ‘Value’,val);
end;
else,
mrmvtool (‘error’, ‘badargs’, [*MRMVTOOL does not recognize ‘’’' ..
setstr(flag(:). ‘¢’ as an options flag '1);
end;
elseif strcmp(action, ‘compute’},
if (nargin==1),
h = get(findobj (mrmv_£fig, ‘Tag’, ‘compute’), 'CallBack’);

return;
elseif (nargin<6),
mrmvtool (‘error’, ‘badargs’,
‘MRMVTOOL requires 6 input arguments to compute the RMVs.'’);
return;
end;
% check data
mrmvtool { ‘checkparse’, ‘unfiltered’, flag);

mrmvtool (‘checkparse’, 'freqgs’ ,val);

mrmvtool { ‘checkparse’, ’indices’ ,argd);

mrmvtool (‘checkparse’, ‘nrefs’ ,args);

mrmvtool (‘checkparse’, ‘poles’ .argb) ;

if isstr(argd), if strcmp(arg4, ‘none’), arg4=[]; else, argd4=l:size(flag,l); end; end;

% check consistency
if (size(val,l)~=size(flag,l)),
mrmvtool (‘errox’, ‘error’,
‘MRMVTOOL requires the Data and Frequency lengths be the same.’};
return;
elseif any(argd4<l | argd>length(val)},
mrmvtool (‘error’, ‘error’, ..
‘MRMVTOOL requires that the frequency indices be valid.’):
return;
elseif (argS~=round(argS) | rem(size(flag,2),arg5)~=0},
mrmvtool (‘error’, ‘error’, ['‘MRMVTOOL requires that the # of columns °
‘of the Unfiltered Data be a multiple of #ofRefs '1):
elseif isempty{argé),
mrmvtool (*error’, ‘error’,

Appendix A: Computer Codes 101

mrmvtool.m — Graphical User Interface for mrmyv function (cont.)

*MRMVTOOL needs one or more poles from which to compute RMVs.');
return;
end;
% do the computing
set (mrmv_£fig, 'Pointer’, ‘watch’};

val = val(:);

argd = argd{:);

outtype = mrmvtool(‘'get’,’outtype’};
realonly = mrmvtool(‘'get’, ‘realonly’};

[rmv,mpv,ufrfs,robind,condnum,err_calc,err_total,cor_calc,cor_total,warn]
= mrmv{argé6,val, flag,arg5,arg4,outtype, realonly,1);
set (mrmv_fig, 'Pointer’, ‘arrow’);
if isstr(rmv),
mrmvtool (‘error’, ‘error’,rmv);
else,
mrmvtool (‘set’, ‘oldunfiltered’, flag);
mrmvtool (‘set’, ‘RMVMatrix’,rmv);
mrmvtool (‘set’, ‘MPVMatrix’,mpv};
mrmvtool (‘set’, ‘FilteredData’,ufrfs);
mrmvtool (‘set’, 'UFRFErrorindexed’,err_calc);
mrmvtool (‘set’, ‘UFRFErrorall’,err_total);
mrmvtool (*set’, ‘UFRFCorrelationindexed’, cor_calc):
mrmvtool (‘set’, ‘UFRFCorrelationall’,cor_total};
mrmvtool (‘set’, ‘MPVWeightedFilteredData’, prod(size(mpv))+l:size(ufrfs,2));
if (~isempty(warn) & mrmvtool(‘'get’, 'showwarnings’)}},
mrmvtool (‘error’, ‘warning’,warn);
end;
end;

elseif strcmp(action, ‘checkparse’),

if strcmp (flag, ‘unfiltered’), str = ‘Unfiltered Data’;

elseif stremp(flag, ‘freqgs’)y, str = ‘frequencies’;

elseif strcmp(flag, ‘indices’), str = ‘frequency indices’;

elseif strcmp(flag, ‘nrefs’), str = ‘numbers-of-references’;

elseif stremp(flag, ‘poles’), str = ‘poles’;

else, mrmvtool{‘error’, ‘'badargs’, [MRMVTOOL cannot parse a string of type ‘'‘'‘
flag(:)." **'."1);

return;
end;
if isstr(val),
if strcmp(val, ‘err’},
mrmvtool (‘error’, ‘error’, ['MRMVTOOL is unable to parse the °
str ' string.’ sprintf(‘\n’) lasterrl]);
elseif ~(strcmp(flag, 'indices’) & (strcmp (val, ‘all’) |strcmp(val, ‘none’))),
mrmvtool (‘error’, ‘error’, ['MRMVTOOL cannot use ‘‘'‘ val{:).'
‘4 as ' ostr '.'));
end;
end;

elseif strcmp{action, ‘choose’),
% check if we have frequency-based data
v = mrmvtool{‘get’, ‘lastplotted’);

if (v>2),
mrmvtool (‘error‘, ‘warning’, [‘MRMVTOOL cannot choose spectral *
‘lines unless Unfiltered or Filtered Data is plotted.’]);
return;
end;

if ~isempty(flag),
if isstr(flag)},
mrmvtool (‘checkparse’, 'indices’, flag);
if stremp(flag, ‘none’), flag=[]; end;
else,
flag = flag(:};
end;
end;
% get the axes
oldfig = gcf;
figqure(mrmv_£fig):
oldax = gca;
ax = findobj (mrmv_£fig,'Tag’, ‘axl’);

Appendix A: Computer Codes 102

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

axes (ax) ;
% check if we’re in bounds
if isstr(val) | any(size(val)~=[1 2]},

pt = get(ax, 'CurrentPoint’};
pt = pt(l,1:2);
else,
pt
end;
curlim = [get(ax, 'XLim‘);get(ax, ‘YLim’)].’;
if (all(pt>=curlim(l,:)) & all(pt<=curlim(2,:)}},
if (~btnstate(mrmv_£fig,'zoom’,’'zoom’)),
popup = findobj (mrmv_£fig, 'Tag’, 'popup’);
if isempty(popup},
axes (oldax) ;
figure(oldfig);
error { ‘MRMVTOOL cannot find its popup menu.’};
end;
v = get({popup, 'Value’);
if any({v==(1 2 4 6]},
1 = findobj(ax, ‘Type’,’'line’, ‘LineStyle‘,'o’, 'Tag’, ‘indiceslines’});
if (length(l)~=2), delete(l); 1={); end;
if isempty (1)},
% turn choosing on
% get the data points
kids = findobj(ax, 'Type',‘line’};
if ~isempty(kids),
x = get(kids (1), 'XData’'); x=x(:);
vyl = zeros{length(x),length(kids));
for k=1:1length(kids),
yy = get(kids(k), 'YData');
if {length(yy) ~= length(x}),
axes (oldax) ;
figure(oldfig);
mrmvtool (‘error’, ‘error’, ['"MRMVTOOL found data’
* of varying lengths in plot window.’]});

val;

return;
end;
yl(:,k}) = vyy.";
end;
% check indices
n = length(x);
if strcemp(flag, ‘all’),
flag = (1:n)."*;
elseif any((flag>n) | (flag<l) | (flag~=round(flag)) },
flag = round(flag);
flag((flag>n) | (flag<l)) = [};
flag0 = flag;
if (length{flag)==n),

if all(flag(:).’'==[1:n]),
flag0 = ‘*all’;
end;
end;
if isstr(flag0), flag0=['''‘' flag0(:).’' *'’'’}); end;
mrmvtool ('setstr’, ‘indices’, flag0);
end;

% divy them up
ii = zeros(n,1l);
ii(flag) = ones{length(flag),1);

x1 = x{ ii,ones(l,size(yl,2))});
x0 = x{~ii,ones(l,size(yl,2)));
y0 = yl{(~ii,:);
yl = yl(ii,:);
x0=x0(:)."; x1=x1(:).’; yO=y0(:)."; yl=yl(:)."';
if isempty(xl),
1(1) = line(NaN,NaN, ‘Color’,’r’, 'LineStyle’,'0o’,

‘Pag’, ‘indiceslines’);
set(1(1), 'Xpata’, (], 'YData',[]);
else,
1(1) = line(xl,yl, 'Color’,'r’, 'LineStyle’, ‘0",
‘Tag’, ‘indiceslines’};

Appendix A: Computer Codes 103

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

end;

set(1(1l), 'UserData’,x);

if isempty(x0),

1(2) = line(NaN,NaN, 'Visible’, ‘off’, ‘LineStyle’, ‘o',
‘Tag’, ‘indiceslines’);
set (1(2),‘XData’, [}, ‘YData’,[]};

else,

1(2) = line(x0,y0,’Visible’, ‘off’, 'LineStyle’, '0’,
‘Tag’, ‘indiceslines’);

end;

set (1, 'ButtonDownFcn’, get (ax, ‘ButtonDownFcn'},
‘EraseMode’, indiceslineserase) ;

end;
else,
% get the data

1 = [findobj(l,’flat’,’'Visible’, ‘on’};findobj (1, flat’,'Visible’,'off’}];
x = get(1l(1), 'UserData’};

x1l = get(1{(1), 'XData’
x0 = get(1l{2), 'XData’
vl = get(l(1l), 'YData’
y0 = get{1l(2), 'YData’

n = length(x);
% check the indices

}i
)i
)i
)i

if (isstr(flag) & strcmp(flag, ‘all’)),

flag = {(1:n)."’;
elseif any((flag>n)

(flag<l) | (flag~=round(flag))),

flag = round(flag(:));
flag((flag>n) | (flag<l)) = [);

end;
flag = sort{flag);

if ~isempty(flag), flag([diff(flag);1)==0)}={]; end;
if (length(xl)*n/(length(xl)+length(x0}) ~= length(flag)),
% indices has been changed ... update picture to reflect it
x0=[x0 x1]; x0=x0(:);
yO0=[y0 yll; yO0=y0{:);
(x0,1ii] = sort(x0); yO=yO(ii);

x0=reshape (x0, length(x0) /n,n) . ‘; yO=reshape(y0,length(y0)/n,n}.";
[junk,ii] = sort(x’):

x0(ii, :)=x0; yO0(ii, :)=y0;

x1=x0(flag,:); x0(flag,:)=[1; yl=yO(flag,:); yO(flag,:)=[];
x0=x0(:)."; x1l=x1{(:)."; yO=y0{(:).’; yl=yl{(:)."':

end;
% compute distances

if strcmp(get(ax, ‘XScale’), ‘log’),

x1d
x0d
else,
x1d
x0d
end;

log10(x1/pt(1))/logl0(curlim(2,1)/curlim(1,1));
logl0(x0/pt(1})/logl0{curlim(2,1)/curlim(1,1));

(x1-pt (1))/ (curlim(2,1)-curlim(1,1});
(x0-pt (1)) /(curlim(2,1) -curlim{(1,1)):

if strcmp{get(ax, ‘YScale'), 'log’},

yid
y0d
else,
yid
y0d
end;
ii=find(isnan(x1d));
ii=find({isnan(x04d));
ii=find(isnan(yld)):
ii=find(isnan(y0d));
0ldu = get(ax, 'Units’

0w

if
if
if
if
Y

logl0(y1/pt{2)}/1ogl0(curlim(2,2)/curlim(1,2)};
1log10(y0/pt(2))/logll(curlim(2,2)/curlim(1,2));

{yl-pt{2))/{curlim(2,2)~-curlim(1,2));
{y0O-pt(2}))/(curlim(2,2)~curlim(1,2)};

(~isempty(ii)),xld(ii)=inf*ones(length(ii), 1) ;end;
(~isempty(ii)),x0d(ii)=inf*ones(length(ii),1);end;
(~isempty(ii)),yld(ii)=inf*ones(length(ii), 1) ;end;
(~isempty(ii)),y0d(ii)=inf*ones(length(ii),1l);end;

oldp = get(ax,’Position’);
set {(ax, 'Units’, ‘pixels’);

p = get{ax, 'Position’

}i

set (ax, ‘Units‘,oldu, 'Position’,oldp);
{(yld*p(4))."2;
x0d = (x0d*p(3)).”2 + (y0d*p(4))."2;

x1ld = (x1d*p(3))."2 +

% determine minumum
{junk,iil] = min{x1d)

;

Appendix A: Computer Codes

104

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

[junk, ii0] = min(x04d);
ii = 1;
if (~isempty(iil) | ~isempty(iiO)}),
if isempty(iil),
ii = 0;
elseif ~isempty(1ii0),
ii = (x1d(iil) <= x04(ii0)});
end;
% adjust data
if (ii),
ii = find(xl==x1(iil)}));
flag(find(flag==£find(x==x1(ii(1))))) = (};
x0 = [{x0 x1(ii)};
y0 = [y0 yl(ii}];
x1(ii) {1;
y1l(ii) {1:
else,
ii = find{(x0==x0(1ii0));
flag = sort((flag;find(x==x0(ii{1)))]};
flag([diff(flag):11==0) = [];
x1 = [x1 xO0(ii));
vyl = [yl yO(ii)]);
x0(ii) = [];
yO0(ii) = [];
end;
% replace it
set (1(1), ‘XData’,x1, 'Ybata’,yl);
set(1(2), ‘XData’,x0, ‘YData’',y0);
if (length(flag)==n)},

if all(flag(:).’'==[1l:n]),
flag = ‘all’;
end;
end;
if isstr(flag), flag=(‘'’'‘' flag(:}.’ ‘’**']; end;
mrmvtool {‘setstr’, ‘indices’, flag);
end;
end;
end;

end;
elseif (pt(2)<=curlim(2,2)),
axlimdlg(‘Axes Limits Dialog’, (1 1]);
oldfig = gcf;
end;
set (mrmv_fig, 'CurrentAxes’,oldax);
figure(oldfig);
ax=findobj (mrmv_£fig, 'Type’, ‘axes’, ‘Tag’, ‘zoom’};
if ~isempty(ax), set({mrmv_fig, ‘CurrentAxes’,ax); end;

elseif strcmp(action, ‘btndraw’},
if stremp(flag, ‘zoom’},
if (0), % faster text version, but not as nice
h=text{.5,.5, 'zoom’, 'HorizontalAlignment’, 'center’, ‘FontSize’,buttontextsize);
else, % cool icon version

x1 = [0.0917 0.1250 0.1583 0.1917 0.2250 0.2917 0.3583 0.4250 0.4583,
0.4917 0.5250 0.5250 0.5583 0.5917 0.6250 0.6583 0.6917 0.7250,
0.7583 0.7917 0.8250 0.8917 0.9250 0.9250 0.8917 0.8583 0.8250,
0.7917 0.7583 0.7250 0.6917 0.6583 0.6250 0.5583 0.5250 0.5583,
0.5917 0.5917 0.5917 0.5917 0.5583 0.5250 0.4917 0.4583 0.4250,
0.3583 0.2917 0.2250 0.1917 0.1583 0.1250 0.0917 0.0583 0.0583,
0.0583 0.0583 0.0917 0.1250 0.1250 0.1250 0.1250 0.1583 0.1917,
0.2250 0.2917 0.3583 0.4250 0.4583 0.4917 0.5250 0.5250 0.5250,
0.5250 0.4917 0.4583 0.4250 0.3583 0.2917 0.2250 0.1917 0.1583,
0.1583 0.1250];

vl = [0.5417 0.5083 0.4750 0.4417 0.4083 0.4083 0.4083 0.4083 0.4417,
0.4750 0.4417 0.3750 0.3417 0.3083 0.2750 0.2417 0.2083 0.1750,
0.1417 0.1083 0.0750 0.0750 0.1083 0.1750 0.2083 0.2417 0.2750,
0.3083 0.3417 0.3750 0.4083 0.4417 0.4750 0.4750 0.5083 0.5417,
0.5750 0.6417 0.7083 0.7750 0.8083 0.8417 0.8750 0.3083 0.9417,
0.9417 0.9417 0.9417 0.9083 0.8750 0.8417 0.8083 0.7750 0.7083,
0.6417 0.5750 0.5417 0.5750 0.6417 0.7083 0.7750 0.8083 0.8417,

Appendix A: Computer Codes 105

mrmvtool.m — Graphical User Interface for mrmyv function (cont.)

.8750 0.8750 0.8750 0.8750 0.8417 0.8083 0.7750 0.7083 0.6417,
.5750 0.5417 0.5083 0.4750 0.4750 0.4750 0.4750 0.5083 0.5417,
.5417 0.5750};

2917 0.3583 0.3917 0.3917 0.3583 0.2917 0.2583 0.2583 0.2917);

t
[=XNe NN}

2 [O.
y2 {0.6083 0.6083 0.6417 0.7083 0.7417 0.7417 0.7083 0.6417 0.6083);
h = [patch(‘XData',xl,’YData’,yl,’ZData’,ones(size(xl)),
‘EdgeColor’, ‘none’, 'FaceColor’, ‘k’); .
patch(‘XData’,xz,'YData’,yZ,‘ZData‘,ones(size(xz)),
‘EdgeColor’, ‘none’, 'FaceColor’, ‘k*)];
end;
else,
error { [*‘MRMVTOOL got an unknown button **‘ flag ‘’’ to draw.’]l);
end;

elseif strcmp(action, ‘btndo’}),
if stremp(flag, ‘zoom’},
inzoom = btnstate{mrmv_£fig, ‘zoom’,'zoom’);
ax = findobj (mrmv_£fig, ‘Tag’, ‘axl’);
if (inzoom),
% turning zoom on
set (mrmv_fig, ‘WindowButtonDownFcn’, ‘mxrmvtool (* ‘zoom’ "), .
‘WindowButtonUpFecn’, ‘1l; ‘, ‘ButtonDownFcn', ‘') ;

for k=ax(:).’,
set(k,'UserData’,get(k,‘ButtonDownFcn'),’ButtonDownFcn’,");
set (findobj (get (k, ‘Children’), *Type’, ‘line’), ‘ButtonDownFcn', ‘' };
end;
else,
% turning zoom off
set(mrmv_fig,‘windowButtonDownFcn',",’windowButtonUchn',");
for k=ax(:).’,

bdf = get(k, 'UserData’);
set (k, 'ButtonDownFen’,bdf, ‘UserData’, ' ') ;
set(findobj(get(k,'Children’),'Type'.'1ine'),'EuttonDownFcn',bdf):
end;
end;
else,
error (['"MRMVTOOL got an unknown button ‘'’ flag ‘'’’ to do.']l):
end;

elseif strcmp(action, ’'zoom’},
% find the axes
if (gcf ~= mrmv_fig), return; end;
oldax = gca;
if isempty(flag),
ax = mrmvtool ('findax’);
else,
ax = findobj(mrmv_£fig, 'Tag’, ‘axl’};
end;
if ~isempty(ax),
axes (ax);
% get the first point
pts = get{ax, 'CurrentPoint’};
pts = (pts(1,1:2);pts(1,1:2});
% do the zoom
sel = get(l,’'SelectionType’);
zlab = get{ax,’'ZLabel’);
ud = get(zlab, ‘UserData’});
if (strcmp(sel, ‘open’) | strcmp(flag, ‘'restore’)),
FELBTLLLBLEHLABLLELLILBLEBLIBLILLLTLLLELLLBBLELLITALTLLILLIRRBLLRY
% There is still a problem with this. For some reason, the ‘open’ %
% selection type (double-clicks) isn‘t ever occurring. I don't %
% know why. Seems to work in other windows, but not here. %
D T T R R A R R R Lt A L
% zoom back to original limits
if ~isempty(ud),
if any(size(ud)~=[(1 41]),
disp(‘MRMVTOOL was unable to zoom out because the ‘'UserData’’’):
disp(‘of the '’ZLabel’’ of the axes has been corrupted.’);
else,
axis(ud);

Appendix A: Computer Codes 106

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

set (zlab, ‘UserData’, {]);
end;
end;
else,
if isempty(flag),
selnorm = strcmp(sel, ‘normal’);
else,
selnorm = strcmp{flag, ‘in‘});
end;
% store the limits for later restoration
if isempty(ud), set(zlab, 'UserData’, [get(ax, ‘XLim’) get{ax, 'YLim’}]); end;
% get the second point if needed
if (selnorm & isempty(flag)},
% rbbox requires the figure units be pixels
oldu = get(mrmv_fig, ‘Units’);
if (~strcmp{oldu, ‘pixels’)),
oldp = get(mrmv_fig, ‘Position’);
set (mxmv_£fig, ‘Units’, ‘pixels’);
end;
% do the rubber-band box
rbbox ([get (mrmv_£fig, ‘CurrentPoint’) 0 0],get(mrmv_fig, ‘CurrentPoint’});
% restore figure units and position
if (~strcmp{oldu, ‘pixels’)},
set (mrmv_f£fig, ‘Units’,oldu);
set (mrmv_fig, ‘Position’,o0ldp);
end;
% get the second point
pt2 = get(ax,’CurrentPoint’);
pts(2,:) = pt2(1,1:2);
end;
% adjust limits for log scaling
curlim = [get(ax, ‘XLim’);get(ax, ’YLim’)}]}.";
logs = [strcmp(get(ax, ‘XScale’),‘log’) strcmp(get(ax,’'YScale’),‘log’)];
logs = [logs;logs];
if (any(logs(:})),
curlim{logs)
pts(logs)
end;
% for menus, make it the middle
if ~isempty(flag),
pts = [1;1)/2*sum{curlim);
end;
% check proximity of points in units of pixels
if (selnorm & isempty(flag)),
oldu = get(ax, 'Units’);
oldp = get({ax,'Position’);
set (ax, ‘Units’, 'pixels’);
p = get(ax, 'Position’);
set (ax, ‘Units’,o0ldu, 'Position’,oldp)}:;
if (sqrt(sum((diff(pts)./diff(curlim).*p(3:4))."2)} <= 3},
pts(2,:) = ptsi{l,:);
end;
end;
% determine new limits
if all(diff (pts)==0),
factor = 2;
if (selnorm), factor=1/factor; end;
curlim = factor/2 * diff(curlim);
curlim = pts + [-curlim;curlim];
else,
curlim
end;
% readjust for log scales
if (any(logs(:)))}, curlim(logs)=10."curlim(logs); end;
% set the new limits
set (ax, ‘XLim’,curlim{(:,1).,'YLim’,curlim(:,2)."});
end;
end;
axes {(oldax) ;
ax=findobj (mrmv_£fig, 'Type’, ‘axes’, ‘Tag’, 'zoom’) ;

loglO(curlim(logs));
logl0(pts(logs}));

[min{pts) ;max(pts)];

Appendix A: Computer Codes 107

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

if ~isempty(ax), set (mrmv_fig, 'CurrentAxes’,ax); end;

elseif strcmp(action, 'keycall’),
char = get(mrmv_£ig, 'CurrentCharacter’);
if abs{char)==127 | abs(char)==8,
mrmvtool (*clear’);
elseif abs(char)==12,
refresh(mrmv_£ig);
end;

elseif strcmp(action,’findax’},
FLLLFLEHILILLELDBLEEIBLLLALRBLLTLALBLLTHTLLLLLLLILLLILLLLIIBLLLLLR%Y
% I have no idea why the drawnow/drawnow(‘'discard’) is necessary, $
% but if they are not present and if the window is larger than a L]
% certain size then we get a redraw every time this is called. %
% This may only occur on certain platforms, but in any case, the %
% drawnow pair should take care of the problem for the time being. %
FREEFFLELLLLIFLLLLTLELLBLLTLLLLLIBLLLELRLLTTLBBLEBLLLBLABLLBBIBIRLY
drawnow;
pt = get {mrmv_fig, 'CurrentPoint’);
ax = findobj (mrmv_£fig, 'Tag’, ‘axl’);
oldu = get(ax,’'Units‘};
oldp = get(ax, 'Position’};
set (ax, ‘Units’, 'pixels’);
p = get(ax, 'Position’);
set (ax, ‘Units’,oldu);
set (ax, ‘Position’,oldp);
drawnow ('discard’);
if ((pt(l)>=p(1)) & (pt(2)>=p(2)) & (pt(l)<=p(l}+p(3}) & (Pt(2)<=p(2)+p(4})),
h = ax;
else,
h = [};
end;

elseif strcmp(action, ‘moved’),
% check where we are and adjust pointer accordingly
if (mrmv_fig == gcf),
inzoom = btnstate(mrmv_fig,’zoom’, ‘zoom’);
curptr = get(mrmv_fig, ‘Pointer’);
ax = mrmvtool(‘'findax’);
if (inzoom & ~isempty(ax)),
newptr = ‘cross’;
elseif ((~isempty(ax)) & (~isempty(findobj(ax, Type’,’'line’, ..
‘LineStyle’, ‘o’, ‘'Tag’, ‘indiceslines’)))},
newptr = ‘crosshair’;
else,
newptr = ‘arrow’;
end;
if ~strcmp(curptr,newptr),
set (mrmv_£ig, ' Pointer’ ,newptr);
end;
ax=findobj (mrmv_fig, 'Type’, 'axes’, 'Tag’, 'zoom’};
if ~isempty(ax), set({mrmv_fig, ‘CurrentAxes’,ax); end;
end;

elseif strcmp{action, ‘clear’),
if (debugging),
disp (*MRMVTOOL does nothing with a ‘'‘clear’’ action.’);
end;

elseif strcmp(action, ‘get’),
% this is coded like this such that if getuprop{) or
% setuprop{) are unavailable a work-around could be coded
h = getuprop{mrmv_£fig, flag};
if isempty(h),

if stremp (flag, 'realonly’), h=0;
elseif strcmp(flag, 'outtype’), h=0;
elseif strcmp(flag, ‘showwarnings’), h=1;
elseif strcmp{flag, 'MPVWeightedColor‘},
h=get (findobj (mrmv_fig, 'Tag‘, ‘ax1’), '‘DefaultLineColor’);

Appendix A: Computer Codes 108

mrmvtool.m — Graphical User Interface for mrmv function (cont.)

end;
end;

elseif stremp(action, ‘set’),
% coded for easy work-around if getuprop() or setuprop() are unavailable
setuprop (mrmv_£fig, flag,val);

elseif strcmp{action,’‘error’),
if strcmp({flag, ‘badargs’), % bad inputs somehow
error(val});
elseif strcmp(flag, ‘error’) | strcmp(flag, ’warning’),

oldfig = gcf;

oldpointer = get(oldfig, ‘Pointer’);

if ~strcmp(oldpointer, 'watch’), set(oldfig, ‘Pointer’, ‘watch’); end;

% get the dialog

dialogname=flag; dialogname(1)=upper (dialogname(1l)};

dialogname = [‘MRMVTool ' dialogname];

h = findobj('Type’, 'figure’, 'Name’,dialogname);

hnew = ~all(size(h));

centerpos = mrmvtool(‘'centerloc’,1);

if {(hnew),
h = dialog(‘'Style’, flag, ‘TextString’,val, 'Name’,dialogname, ‘Replace’, ‘on’);
set(h, ‘Units’, ‘pixels‘});

elseif (length(h)>1),
delete(h(2:length(h}));
h = h(l);

end;

% center it

pos = get(h, 'Position’);

pos(1:2) = centerpos - pos({3:4)/2;

set(h, ‘Position’,pos);

% if impossible, center over mrmv_fig

pos = get(h, ‘Position’);

if any(centerpos<pos(1:2) | centerpos>pos{1:2)+pos(3:4)},
centerpos=mrmvtool (‘centerloc’,2);
pos(1:2) = centerpos - pos{3:4)/2;
set (h, ‘Position’,pos);

end;

pos = get(h, 'Position’);

if any(centerpos<pos(1:2) | centerpos>pos(1:2)+pos(3:4)},
centerpos=mrmvtool{‘centerloc’,3);
pos(1:2) = centerpos - pos{3:4)/2;
set (h, 'Position’,pos);

end;
% set the text and properties
errortexttag = ‘errortext’;
if (hnew),
closefunc = [‘set(gcf,’‘Visible’’,’ 'off'’);set(findobj(gct,’
‘s'Pag’’,’’’ errortexttag ‘’’),’’'String‘’, ’‘}:’'):
set (h, ‘KeyPressFen'’, ['if (abs(get(gcf,’’'CurrentChar’’))==13"
* |abs (get (gcf, * 'CurrentChar’’}))==3), ' closefunc * end’]);

set (findobj (h, ‘CallBack’, ‘delete(gcf) '), 'CallBack’,closefunc);
set (findobj (h, 'String‘,val), '‘Tag’,errortexttag):;
mrmvtool (‘set’, ‘subfigs’, [mrmvtool{‘get’, ’'subfigs’);h});

else,
set (findobj (h, ‘Tag’,errortexttag), ‘String’,val};
end;
if ~strcmp(oldpointer, ‘watch’), set(oldfig, ’Pointer’,oldpointer); end;
figure(h);
set (h, 'Visible’,'on’);
drawnow;

else, % anything else
error (val);
end;

else,
error ([*MRMVTOOL got an unknown action: '’’' action ‘‘*.‘1);

end;

Appendix A: Computer Codes 109

8.1.4 mrmvtool_demo.m — Demo Script for MRMVTool
mrmvtool_demo runs a simple demonstration of some of the capabilities of the
mrmvtool GUL
% mrmvtool_demo Demonstrate the MRMVTOOL GUI.
% Copyright (c}1996, Erik A. Johnson <johnsone@uiuc.edu>, 5/30/96

clc
echo on

% This script demonstrates some of the abilities of the MRMVTool GUI
% front-end to MRMV.

% First set up some data. A simple 4-degree of freedom system, with
% 2 inputs and 3 outputs (not collocated).

n=4; nrefs=2; no=3;
la,b,¢,d,M,C,K,PP,1,W] = ndof(n);
poles=1(l:n);

[a,b,c,d] = ssselect(a,b,c,d,size(b,2)+(l-nrefs:0),1:no);

Wrange = (max(W)/min(W))~(1/3);
frgs=logspace (1logl0(min (W) /Wrange}, 1ogl0 (max (W) *Wrange) ,401) . "';

frfs = zeros(length(frgs),nrefs*no);
for k=1:nrefs, frfs(:,{(l:no)+(k-1)*no)=freqresp(a,b,c,d,k,sqrt(-1)*frqgs); end;

pause % Press any key to continue after pauses.
clc
% Now we start up the MRMVTOOL graphical user interface

mrmvtool;

pause % Press any key.
clc

% The editable text strings must be set to the data computed above.
% They will generally be typed in by hand, but from an m-file we can do:

mrmvtool (‘setstr’, ‘unfiltered’,’'frfs’);
mrmvtool (‘setstr’, ‘fregs’', ‘frgs’);
mrmvtool {‘setstr’, ‘nrefs’, ‘nrefs’});
mrmvtool { ‘setstr’, 'indices’,’’'all’’");
mrmvtool (‘setstr’, 'poles’, ‘poles’);

% (The GUI functions below will all be done using a command-line, but
% the user actions to do the same thing will be given in parenthesis.)

pause % Press any key.
clc

% The Unfiltered Data can be plotted
% (select ‘Unfiltered Data’ from the popup menu and hit the ‘Plot’ button)

mrmvtool (‘popup’, ‘Unfiltered Data‘):
eval (mrmvtool{‘plot’)}:

Appendix A: Computer Codes 110

mrmvtool_demo.m — Demo Script for MRMVTool (cont.)

pause % Press any key.
clc

% The axes limits can be changed by clicking anywhere below or left of the
% main plot axes. This will bring up the ‘Axes Limits Dialog’.

mrmvtool { ‘choose’, eval (mrmvtool (‘getstr’, 'indices’),''‘err’ '), [-inf -inf]);
axlimdlg = gcf;

pause % Press any key.

% The axes limits can be changed and the dialog closed when done.

if any(findobj==axlimdlg), delete(axlimdlg); end;

pause % Press any key.

clc

% The ‘magnifying glass’ icon, when clicked, enters “zoom” mode, such that

% clicks in the plot window half the axes limits, centered around that point.
% (An alt-click (option-click and control-click on the Mac) zooms out.)

% These functions can also be selected from the MRMVTool menu.
% For example, to zoom in twice:

mrmvtool {*zoom’, ‘in’)}; drawnow; mrmvtool(‘zoom’,‘'in’);

pause % Press any key.

% The axes limits can be restored to their original values also

mrmvtool (‘zoom’, ‘restore’);

pause % Press any key.
clc

% Now compute the reciprocal modal vector matrix (RMVs)
% (click the ‘Compute RMVs’ button)

eval (mrmvtool (*compute’));
% And display the filtered response
% (select ‘Filtered Data’ from the popup menu and click the ‘Plot’ button)

mrmvtool (‘popup’, ‘Filtered Data');
eval (mrmvtool (‘plot’)};

pause % Press any key.

Appendix A: Computer Codes 111

mrmvtool_demo.m — Demo Script for MRMVTool (cont.)

clc

% The filtered data can be saved

% (type the desired variable name in the box next to the ‘to workspace as’
% button, then click the button)

mrmvtool { ‘setstr’, ‘toworkspace’, ‘ufrfs’};
eval (mrmvtool (' toworkspace’});

pause % Press any key.
clc

% The RMV matrix can be plotted
% (select ‘RMV Matrix’ from the popup menu and click the 'Plot’ button)

mrmvtool (‘popup’, ‘RMV Matrix’);
eval (mrmvtool {‘plot’}));

pause % Press any key.

if stremp(get(gcf, ‘Name’), ‘MRMVTool Warning'),
eval(get(findobj(gcf,’String’,‘OK‘),'CallBack’));

end;

clc

% And the RMV matrix can also be saved out to the workspace

% (type the desired variable name in the box next to the ‘to workspace as’

% button, then click the button)

mrmvtool(‘setstr',’toworkspace',’rmv_matrix');
eval (mrmvtool { * toworkspace’)) ;
% Here is its value

rmv_matrix

pause % Press any key.
clc

% The RMVs can be restricted to have only real numbers by setting the
% appropriate checkbox in the Options dialog.

% First, open the Options dialog
% (click the ‘Options...’' button)
mrmvtool { ‘options’);

pause % Press any key

% Now check the ‘Restrict RMVs to Real Numbers’ box
mrmvtool (‘options’, ‘realrmv’,1l);

pause % Press any key
% And close the dialog box

% (click the ‘OK’ button)
mrmvtool (‘options”’, ‘OK’};

Appendix A: Computer Codes 112

mrmvtool_demo.m — Demo Script for MRMYVTool (cont.)

pause % Press any key.
clc

% The RMVs can then be recomputed
% (click the ‘Compute RMVs’ button)

eval (mrmvtool (*compute’)};

% And its value extracted

mrmvtool (‘popup’, ‘RMV Matrix’);

mrmvtool (‘setstr’, ‘toworkspace’, 'rmv_matrix‘);
eval (mrmvtool (‘toworkspace’});

rmv_matrix

pause % Press any key.
clc

% The spectral lines used to compute the RMVs can be restricted by
% changing the ‘'Freq. Indices’ value. Let us set it to those frequencies
% within 10% +/- of the actual natural frequencies.

mask = zeros(size(frgs)):
for k=1:length(W), mask = mask | (frgs>=0.9*W(k) & frgs<=1.1*W(k)); end;
indices = find(mask);

mrmvtool {‘setstr’, ‘indices’, ‘indices’);
mrmvtool { ‘popup’, ‘Unfiltered Data’);

eval (mrmvtool(‘plot‘});

% And recompute the RMVs and extract the RMV matrix
eval (mrmvtool (‘compute’)};

mrmvtool { ‘popup’, ‘RMV Matrix’);

mrmvtool { ‘setstr’, ‘toworkspace’, ‘rmv_matrix’);

eval (mrmvtool { ‘toworkspace’});
rmv_matrix

pause % Press any key.
clc

% The spectral lines used to compute the RMVs can be chosen by clicking in the
% plot window if the Unfiltered or Filtered Data has been plotted.

mrmvtool (‘popup’, ‘Unfiltered Data’); eval(mrmvtool(‘'plot’)};
axl=findobj (mxmvtool (‘getfig’), 'Tag’, 'axl’'); xlims=get(axl, 'XLim’); ylims=get{axl, ‘YLim’);

if strcmp(get(axl, ‘YScale’),’'log’), ycenter=sqrt(prod(ylims)); else, ycenter=sum{ylims)/2; end;
mrmvtool ('setstr’, ‘indices’,num2str (round(length({frgs)/2)});

mrmvtool (‘choose’,eval {(mrmvtool{‘getstr’,‘indices’), ' ’'err’ ‘'), [sum(xlims)/2 ycenter]);

pause % Press any key.

% Let’s choose 10 points (at random) to add/remove

xislog=strcmp (get (axl, 'XScale’),’'log’); if (xislog),xlims=log(xlims);end;
for k=1:10,

Appendix A: Computer Codes 113

mrmvtool_demo.m — Demo Script for MRMVTool (cont.)

pt=sum(([0 1]+[1 -1)*rand).*xlims);
if (xislog), pt=exp(pt); end;
mrmvtool { ‘choose’, eval (mrmvtool {‘getstr’,’indices’),’ 'err’’’),(pt ycenter});
drawnow;
end;

pause % Press any key.
clc

% The RMVs can be used to filter a new response

% The same system will be used, but with some multiplicative noise.

frfs2 = frfs.*{l+abs({randn(size(frfs)))/10.*exp(sqrt(-1)*rand(size(frfs))*2*pi));
% This unfiltered, noisy, response can be plotted

% (type ‘frfs2’ in the ‘Unfiltered Data’ text box, select ‘Unfiltered Data’

% in the popup menu and click the 'Plot’ button)

mrmvtool (‘setstr’,’'unfiltered’, ’'frfs2‘});

mrmvtool (‘popup’, ‘Unfiltered Data’);
eval (mrmvtool(‘plot’));

pause % Press any key.

clc

% The same RMVs can then be used to produce the filtered FRFs
% from the new (noisy) transfer functions

% (select ‘Filtered Data’ in the popup menu and click the ‘'Plot’ button)

mrmvtool (‘popup’, ‘Filtered Data’);
eval (mrmvtool{'plot’)};

pause % Press any key.
clc

% The GUI is closed when we are finished
% (click the ‘'Exit’ button)

mrmvtool {‘exit’);

% This demo is over.
echo off

Appendix A: Computer Codes 114

8.1.5 ndof .m — Simple n Degree of Freedom Systems

ndof produces the state-space representation of an n degree of freedom system that is used
in evaluating the MRMYV method and various other system identification algorithms. It is
designed to be able to return continuous- or discrete-time models, in addition to giving the exact
reciprocal modal vectors computed from the configuration-space mass and stiffness matrices.
Further options allow simulation of velocity and acceleration output and varying structural charac-
teristics.

function [a,b,¢,d,M,C,K,PP,1,W,2,U,V] = ndof(n,t,cuttype, massfract,cfract, kfract)
% NDOF set up state-space representation of an N degree-of-freedom system.

[A,B,C,D] = NDOF(N) returns the state-space matrices for an N degree-
of-freedom system. It is a chain of N identical
masses, connected to each other with identical
spring/damper couplings like a train, with the
first mass also connected with the same coupling
to a wall. The outputs of the system are the
displacements of each mass.

k o k +-——+ t=——+ k o=t
I--/\/\/——I |--/\/\/-—| I I |--/\/\/--|
R R L e L N O N e e
c o=t c +-——+ tm—— c +-——t
| oo oo oo oo

{A,B,C,D,MM,CC,KK,PP,L,W,Z,U,V] = NDOF(N) also returns:

MM,CV,KK mass, damping, and stiffness matrices

PP inverse of the configuration-space eigenmatrix;
it is the exact reciprocal modal filter matrix,
such that PP*measured = modal
{sorted by decreasing freq.)

uU,v,L the state-space eigenmatrix, its transposed inverse,
and eigenvalues (all sorted by decreasing frequency)
W, 2 modal natural frequency (rad/sec) and damping ratios

{(assuming the damping decouples)

NDOF(N,T) returns (A,B,C,D) in discrete-time with sample time T.
T=0 implies continuous-time.

NDOF (N, T, OUTTYPE) uses OUTTYPE as the outputs of the system. The default
is ‘displacement’; other valid choices are ‘velocity’,
and ‘acceleration’.

NDOF (N, T, OUTTYPE, MASSFRACT) makes the mass MASSFRACT (all if MASSFRACT
is a scalar; MASSFRACT(i) for the i-th mass if the
length is N).

NDOF (N, T, OUTTYPE, MASSFRACT, DAMPFRACT, STIFFFRACT) does the same with
damping and stiffness.

0P OP 0P OF P 0P OF P OP OP @ P J0 OP P dP OP OP dP OP JO P P P P IP P JP P JP dP P JdP dP JP dP JIP dP dP dP I

% Copyright (c)1996, Erik A. Johnson <johnsone@uiuc.edu>, 4/10/96

% check args
if (nargin<l),
error (‘NDOF requires at least one argument, the # of degrees-of-freedom.’);
elseif (nargin>6),
error ('"NDOF takes at most 6 arguments.’};
end;
if (nargin<2),
t=0;
elseif (length(t)>1),
error (‘NDOF requires that the sampling time T be a scalar’);:
elseif (~all(size(t))),
t=0;
elseif (t<0), %t<0 could be a flag for something later
t=abs(t);

Appendix A: Computer Codes 115

ndof.m — Simple n Degree of Freedom Systems (cont.)

end;

if
if
if
if
if

(nargin<3)}, outtype=[(]; end;

(~all(size(outtype)))}, outtype=‘displacement’; end:
(nargin<4), massfract=[]; end;

(nargin<5), cfract =[}; end;

{(nargin<6), kfract =[); end;

% do the fractions

if

(~all(size (massfract))), massfract=ones(n,1);

elseif (length(massfract)==1), massfract=massfract*ones(n,1);
elseif (length(massfract)==n), massfract=massfract(:);

else, error('NDOF requires that MASSFRACT be scalar or N-by-1.');
end;

if

(~all(size(cfract))), cfract=ones(n,1);

elseif (length(cfract}==1), cfract=cfract*ones(n,1);

elseif (length(cfract)==n), cfract=cfract(:);

else, error(‘'NDOF requires that CFRACT be scalar or N-by-1.');
end;

if

(~all(size(kfract))), kfract=ones(n,l);

elseif (length(kfract}==1), kfract=kfract*ones(n,1);

elseif (length(kfract)==n), kfract=kfract(:);

else, error('NDOF requires that KFRACT be scalar or N-by-1.'});
end;

ml= 1 * massfract;
cl=.1 * cfract;
kl= 1 * kfract;

M=diag(ml) ;
Cc=diag{cl) + diag([cl(2:n);0]};
K=diag(kl) + diag([kl(2:n);0]);

if

{n>1),
c=Cc-diag(ci(2:n),1)-diag(cl(2:n),-1);
K=K-diag(k1l(2:n),1)-diag(kl(2:n},-1);

end;

% state-space .
a=[zeros(n) eye(n); -inv(M)*K -inv(M)*C]);
b=[zeros(n);inv(M)];

if

(lower (outtype(l))=='v’),
c=[zeros(n) eye(n)];
d=zeros(n);

elseif (lower(outtype(l))==‘a’),

c=-[inv (M) *K inv{(M)*C];
d=eye (n);

elseif (lower(outtype(l))=='d’},

c={eye(n) zeros(n)];
d=zeros(n});

else,

error ([*An OUTTYPE value of ‘'‘’ outtype(:).’ '‘’ is not valid. '1);

end;

% discrete-time?
if (t~=0), {a,bl=c2d(a,b,t): end;

if

(nargout>7},

% principal coordinates (Craig, pp. 341ff), sorted by decreasing frequency
[PP,WW]=eig (inv (M) *K)} ;

[WW, k]=sort (diag {(WW));

PP = PP(:,k(n:-1:1));

W = sqrt(Ww(n:-1:1));

CC = PP’ * C * PP;

Z = diag(CC)/2./W;

PP=inv(PP); %note that PP is now the exact modal filter matrix,

fsuch that PP*(n-by-1 measured resp) = modal resp

% check off-diagonals in damping to see if we decoupled

CC = (CcC¢ - diag(diag(CC))}/norm(CC);

if (any(abs(CC(:))>eps*100}),

disp('NDOF: WARNING: damping did not decouple! ’);
end;

Appendix A: Computer Codes 116

ndof.m — Simple n Degree of Freedom Systems (cont.)

% find eigenvalues; rearrange, grouping first of conjugate pairs at beginning
{U,L}=eig(a);
U=[U{(:,1:2:1length(U}) U(:,2:2:1length(U)}];
l=diag(L); L=diag([l1(1:2:length{1));1(2:2:1length{(1))}]); l=diag(L};
V=inv(U).*;

end;

%% example of how to do a time response using the output of ndof
$n=3;

%$(a,b,c,d} = ndof(n);

$t=(0:.05:250)";

$u=randn(length(t),n};

%(y,x]=1lsim(a,b,c,d,u,t);

%

$u2=randn{length(t),n);

%(y2,x2])=1lsim{a,b,c,qd,u2, t);

Appendix A: Computer Codes 117

8.1.6 normv.m — Compute Norm of Column Vectors

normv computes the norm of each column of a matrix. It functions identically to the
standard norm function for a vector argument, but for matrices, norm produces a norm of the
entire matrix, whereas this function computes the norm of each column, returning a row vector
with as many elements as the matrix had columns.

function out = normv(X,P)

% NORMV Norm of vector or of each column of matrix.

L4

%
%
%
%
%
%
%

See also NORM.

NORMV (X,P) acts identically to NORM(X,P) if X is a vector (row or column),
but if X is a matrix, NORMV performs NORM on each column of X.
In other words,

Y=NORMV (X,P) is the same as

for k=1:size(X,2), Y(1,k)=NORM(X(:,k),P); end;

% Copyright (c)1995, Erik A. Johnson <johnsone@uxh.cso.uiuc.edu>, 7/26/95

if (size(X,1)<=1}|(size(X,2)<=1),

if nargin<2,

out = norm(X);
else,

out = norm(X,P);
end;

else,

if nargin<2,
P = 2;
elseif isstr(P),
if stremp(P,inf’),
P = inf;

elseif strcmp(P, 'fro’),

P = 2;

elseif strcemp(P,’'-inf’),
P = -inf;

else,

error(‘Invalid P string in NORM2(X,P}.’);

end;

elseif (size(P,1)~=1)|{(size(P,2)~=1),
error ('P in NORM2(X,P) must be a scalar.’};

end;

if (P==2),

out = sqrt{sum{abs({X)."2));

elseif (p==1),

out = sum(abs(X)):
elseif (P==inf),

out = max{abs(X)};
elseif (P==-inf),

out = min(abs(X));
else,

out = sum(abs(X)."P).”(1/P);

end;

end;

Appendix A: Computer Codes

118

8.1.7 sbys2stack.m — Stack Side-by-Side Blocks

sbys2stack takes a matrix with blocks that are side-by-side and returns a matrix of those
blocks stacked on top of each other. It is the converse of stack2sbys.

function y = sbys2stack(x,N)
% SBYS2STACK Stack blocks in a matrix.

%

% SBYS2STACK({X,N) takes the N side-by-side blocks in X and stacks them.
% In other words, if X is m-by-(N*n), and X1,X2,...,XN

% are m-by-n, and X = [X1 X2 X3 ... XN}, then the output
% is [X1;X2;X3;...;XN].

%

% See also STACK2SBYS, RESHAPE.

% Copyright (c) 1995, Erik A. Johnson <johnsone@uxh.cso.uiuc.edu>, 3/22/95
error (nargchk (2, 2,nargin));
if (isempty(x)), y=x.'; return; end; %added this line, 3/22/95

{m,n)=size(x);

if (rem(n,N}~=0), error(‘The number of columns in X must be a multiple of N.’); end;
y=zeros (m*N,n/N);

[ii,jj)=meshgrid(((1:N)-1)*n*m/N,1l:m)};

[ii,3j]=meshgrid{(((1: (n/N)}-1)*m,ii(:)+3F(:));

y{:)=x(ii{:)+33(:));

8.1.8 stack2sbys.m — Unstack Blocks to Side-by-Side

stack2sbys takes a matrix with blocks that are stacked on each other and returns a matrix
of those blocks side-by-side. It is the converse of stack2sbys.

function y = stack2sbys(x,N)}
% STACK2SBYS Place blocks side-by-side in a matrix.

%

$ STACK2SBYS(X,N) takes the N stacked blocks in X and places them side-by-side.
% In other words, if X is (N*m)-by-n, and X1,X2,...,XN

% are m-by-n, and X = [X1;X2;X3;...;XN}, then the output

$ is [X1 X2 X3 ... XN].

%

% See also SBYS2STACK, RESHAPE.

% Copyright (c) 1995, Erik A. Johnson <johnsone@uxh.cso.uiuc.edu>, 3/22/95
error {nargchk (2, 2, nargin}};:
if (isempty(x)), y=x.'; return; end; %added this line, 3/22/95

[m,n]=size(x);

if (rem(m,N)~=0), error('The number of rows in X must be a multiple of N.'); end;
y=zeros (m/N,n*N};

[ii,jj}=meshgrid(((l:n)-1)*m,1: (m/N)};

[ii,33)=meshgrid (((1:N})-1)*(m/N),ii(:)+33(:});

y{:)=x{ii(:}+33(:));

Appendix A: Computer Codes 119

8.1.9 str2strmat.m— String Conversion Utility

str2strmat is a utility function that converts a string vector that contains newline or return
characters into a string matrix with one row per newline- or return-separated segment. It is used to
construct the legend text in mrmv_test_adapt.

function [(out,ll] = str2strmat(s,st,en)
% STR2STRMAT Convert a string to a matrix of strings.

STR2STRMAT (STRING) takes as input a STRING of characters with embedded
newline (or return) characters, and returns a matrix
with each row being a line from the original string.
The input STRING is assumed to be a vector, not a
matrix. (Zero-padding is used for lines shorter
than the longest. The newline/return character is
NOT included in the output.)

STR2STRMAT (STRING,C) does the same, but uses the character C as the
line separator. (The character C is NOT included
in the output.)

STR2STRMAT (STRING, STARTINDEX, ENDINDEX) does the same, but rather than
using a particular character as a marker for line
endings, this form specifically gives a pair of
vectors, STARTINDEX and ENDINDEX (that should be
the same size and shape), that give the starting
and ending indices, respectively, into the STRING
for each line.

{STRMAT,LINELEN] = STR2STRMAT(...) returns both the string matrix and
a column vector of line lengths.

P dP 9P dP dP P OP JP JIP dP JP P JO dP dO JdP dP dP 0P dP dP IP OP

% Copyright (c)1995, Erik A. Johnson <johnsone@uxh.cso.uiuc.edu>, 8/29/95

% check # of args

if (nargin<l), error(‘STR2STRMAT requires at least one input argument.’);
elseif (nargout>1l), error('STR2STRMAT produces only one output argument.’);
end;

% if empty, return empty
if (~all(size(s))), out=[]; 1ll=(]; return; end;

% compute st and en if necessary

s = s(:)’";
if (nargin<3),
if (nargin<2), c=sprintf(‘\n’'); else, c=st; end;

en=find(s==c)-1;

if (length(en)==0),
en=length(s);

elseif (en(length{en))+l<length(s)),
en{length(en)+1l)=1length(s);

end;

st = [1 en(l:length(en)-1)+2];
else,

en = en(:)’;

st = st(:)’;

if (length(en)~=lengthi(st}},
error {*STR2STRMAT requires that the start and end index matrices be the same size.');
end;
end;

% allocate a matrix

ll=en-st+l;

nlines = length(1ll);
out=setstr({zeros(max(11l),nlines));

% calculate index into new matrix

newi = ones{l,sum{11l});

newi (cumsum{11}) = l+max(11)-11;

newi = cumsum([1l newi(l:length(newi)-1)]))"';

Appendix A: Computer Codes 120

str2strmat.m — String Conversion Utility (cont.)

% calculate index into old matrix

oldi = ones{l,sum(1l1});

oldi{cumsum{1ll(1:nlines-1))+1) = st{2:nlines)-en(l:nlines-1);
oldi(l) = st(l});

oldi = cumsum(oldi);

% do the transfer
out (newi) = s(oldi);
out = out’;

Appendix A: Computer Codes 121

8.2 H_-BASED IDENTIFICATION CODES

8.2.1 hinfid.m — H_-based Identification

hinfid does H_.-based system identification of a single-input, multi-output (SIMO) system
using pulse response data. Linear and nonlinear algorithms are available, as well as various
window functions. The resulting output is numerator and denominator polynomial coefficients.

function [num,den,bound] = hinfid(pulseresp,no,type,n,wind, m,roots_tolerance)
% HINFID Identify SIMO system via H-infinity identification.

[NUM, DEN, BOUND]) = HINFID(H,NO,TYPE,n,WIND,m)} does an H-infinity
identification, where

H is the pulse responses {(one output per column} of a
number of single-input, multi-output (SIMO) systems.
NO is the number of outputs (default is 1).

TYPE is either ‘linear’ or ‘nonlinear’ (default), specifying
whether to use the simple linear algorithm or the two-
stage nonlinear algorithm.

n is the half-window size (default is half #rows(H}}

WIND is the type of windowing function to use; valid choices are:
‘boxcar’ (the default) (1 in |k|<=n)
‘triang’ or ‘triangular’ (1-|k|/n})
‘trap’ or ‘trapezoidal’ (1 in O<=k<=2M, >0 in |k-m|<n)
‘cos’ or ‘cosine’ (cos (k*pi/ (2N+1))
‘hamming’ (.54+.46*cos (k*pi/n}))
‘spline’ ([sin(k*pi/m)*m/ (k*pi})]1~2)
‘hanning’ ({1+cos(k*pi/ (n+1))1/2)
‘blackman’ (.42+.5*cos (k*pi/n)+.08*cos(2*k*pi/n))
‘bartlett’ same as ‘triangular’
‘none’ uses ‘boxcar’

m is an optional auxiliary variable used by the ‘trapezoidal’

(default value is n/2) and ‘spline’ (default value size(H,1))
NUM is the numerator polynomial of the identified model,
one row per column of the pulse response H.
DEN is the denominator polynomial of the identified model,
one row per column of the pulse response H.
BOUND is the estimate of the H-infinity identification error bound
(for the nonlinear algorithm only). Its size is the number
of columns of H divided by NO.

Note: n and m must be scalar or vectors, but length(n), length{m),
and size(H,2)/NO must all be the same or any of them can be 1.
In other words, if L=[length{n) length(m) size(H,2)/NO] then
all(L==max (L) |L<=1) must be true.

BOUND = HINFID(H,NO,TYPE,n,WIND,m) simply returns the identification
error bound.

= HINFID(H,NO,TYPE,n,WIND,m,TOL) sets the tolerance passed to

minreal to factor out common

numerator and denominator roots. Pass a negative value to

only remove common roots at the origin. The default value
used by minreal is 10*abs(root)*sqrt(eps).

This is generally required for large n since root solving

for large polynomials {e.g., order greater than a couple
hundred) is quite time consuming and may introduce additional
error.

90 P 0 P dP JP IP P IO 9P J0 dO P d0 dP IO I JP P P IP IP P dP P dP dP P P dP P OP P OP P OP P JP OP P OP OP OP P dP P IP dP OP dP dP

[K,W] = HINFID(H,NO, ‘'wind’,n,WIND,m) returns the window function W(K,n).
% Copyright (c)1996, Erik A. Johnson <johnsone@uiuc.edu>, 6/16/96

% check # of args

if (nargin<S), error(‘'HINFID requires at least 5 input arguments.’};:
elseif (nargin>7), error(‘HINFID takes at most 7 input arguments.’);
elseif (nargout>3), error(‘HINFID produces at most 3 output arguments.’);
end;

Appendix A: Computer Codes 122

hinfid.m — Heo-based Identification (cont.)

% handle default values
if (isempty(no)), no=1; end;
if (isempty(type)), type=‘'nonlinear’; end;
if (isstr(type)),
type_orig = type(:)’;

type = lower([type_orig ' ‘1);
if (~any(type(l)==‘1lnw’)),
error ([*“HINFID does not recognize ‘‘’ type_orig ‘'’’ as a valid ID TYPE.']);
end;
else,
error { ‘HINFID requires that the ID TYPE be a string.’);

end;
if (isempty(pulseresp)),
if (type(l)~='w’'},
error (*HINFID needs a non-empty pulse response matrix.’);
else,
pulseresp = ones(4d*max(n(:))+1,1);
end;
end;
if (isempty(n)), n=floor(N/2); end;
if (isempty(wind)), wind=‘boxcar’; end;
if (nargin<6), m=[]; end;
if (nargin<?7), roots_tolerance=(]; end;

% get some size information and coerce everything to the right size
[N,M] = size(pulseresp);
if (rem(M,no)~=0},
error (‘HINFID requires that the # of columns in H be a multiple of NO.');
end;
M =M/ no;

if any(2*n(:)>=N), error(‘HINFID requires that n be less than half size(H,1).’); end;
if (type(l)=='1"),
k = (0:N-1)";
else,
k = {0:N/2 -floor((N-1)/2):-1]1";
end;
m=m(:)‘; if (isempty(m)), m=[]; end;
n=n(:)’;

L = {length(m) length(n) M];
if (any(L~=max(L) & L>1)}),
error ([‘HINFID requires that length(n), length(m), and size(H,2)/NO °®
‘be the same or 1.'1);
end;
ii_pr = l:size(pulseresp,2);
if (M<max{(L)),

M = max(L);

ii_pr = ii_pr.’;

ii_pr = ii_pr(:,ones(1,M));
ii_pr = ii_pr(:)*;

end;

if (length(m)>0 & length(m)<M),
m = m*ones(1,M);

end;

if (length(n)>0 & length(n)<M),
n = n*ones(1,M};

end;
if (M>1), k=k(:,ones(1,M)); end;
if (N>1),
if (~isempty(m)), m=m{ones(N,1),:); end;
n = n{ones(N,1),:);
end;
% expand for NO>1
if (no>1),
ii = 1:M;
ii = ii{ones(no,l),:);
ii = ii¢:)’;
if (~isempty({m)), m=m(:,ii); end;
n=n(:,ii);
k = k(:,ii);
M =M * no;

Appendix A: Computer Codes 123

hinfid.m — Heo-based Identification (cont.)

end;

% handle the different window functions
wind_orig = wind(:)’;

wind = lower({wind_orig * ‘1):

wind = wind(1:3);

if (all(wind=='non‘)},

wind = ‘box’;

elseif (all(wind==‘bar’)),
wind = ‘tri‘;

end;

if (all(wind=='box’)),
weight = (abs(k) <= n);
elseif (all{(wind=='tri’)),
weight = max{l-abs(k)./n,0);
elseif (all(wind==‘tra’}),
if (isempty(m)), m=floor(n/2); end;
if (any(m{:)<0) | any(m(:}>n(:)}),
error (*HINFID with trapezoidal windows requires 0 <=m <= n.’});
end;
weight = min(1,max({(n-abs(k-m))./(n-m+(n==m)},0}};
if (any({n==m&k==n)),
ii = find(n==m&k==n);
weight (ii) = ones{length(ii),1);
end;
n = n + m; %because the trapezoidal window is skewed toward causal values
if any(2*n(:)>=N),
error (['HINFID with a trapezoidal window requires that n+m be *
‘less than half size(H,1).’)};

end;
elseif (all(wind==‘cos’)),

weight = cos{pi*k./(2*n+l)) .* {abs (k) <=n};
elseif (all(wind=='ham’}),

weight = (.54+.46%cos(pi*k./n})) .* (abs(k)<=n};
elseif (all{wind=='spl’}),
if (isempty(m)), m=N; end;
weight = (sin(k*pi./m).*m./(k+(k==0))/pi)."2 .* (abs (k) <=n);
if (any(k(:)==0}),
weight (k==0) = weight(k==0)} + (abs (k(k==0)) <=n(k==0));
end;
elseif (all{wind=='han’}),
weight = (l+cos(pi*k./(n+1)))/2 .* (abs{k}<=n);
elseif (all(wind=='bla’}),
weight = {.42+.5*cos{pi*k./n}+.08*cos(2*pi*k./n)} .* (abs (k) <=n) ;
else,
error ([‘HINFID does not recognize '’’ wind_orig ...
v+ ag a valid windowing function.‘]);
end;

% handle window function version
if (type(l)=='w’),

if (N>1),
[k,ii) = sort(k);
weight = weight(ii,:):
end;
num = k;
den = weight;
return;

end;

% reduce n back to a row vector
n = n(l,:);

clear(‘k’,'m’);

% weight the pulse response
pulseresp = pulseresp(:,ii_pr} .* weight;

if (type(l)=='1’}, % handle linear identification

% get rid of ending 0 terms

Appendix A: Computer Codes 124

hinfid.m — He-based Identification (cont.)

mask = (n>0 & pulseresp(n+1+(0:length(n)-1)*M)==0);
while (any(mask)),

n(mask) = n{mask) - 1;

mask = (n>0 & pulseresp(n+1+(0:length(n)-1)*N)==0);
end;

% make some space
max_n_plus_1 = max(n)+1;
num = zeros(M,max_n_plus_1);
den = num;

% compute it

den({(l:length(n})+M* (max_n_plus_1l-(n+l1)})

for i=1:M,
num{i,max_n_plus_1l-n{i):max_n_plus_1)

end;

ones (M, 1);

pulseresp{l:n(i)+1,i)’;

% shorten if possible

while (all(num(:,1)==0 & den(:,1)==0)),
num{:,1)={];
den(:,1)=[]);

end;

% no bound for linear algorithm
bound = [];

else, % handle nonlinear identification

% make some space

num = zeros(M,4*max(n)+1);
den = num;

bound = zeros(1l,M/no);

% compute it
for i=1:no:M,

% extract the data for this response
hw_anticausal = pulseresp(N:-1:N-n{i)+1l,i:i+no-1}"';
hw_causal = pulseresp(l:n{i)+1,i:i+no-1}";

% eigenproblem of sum of square of Hankel matrices
hank2 = zeros(n(i));
for j=1:no,

hank2 = hank2 + hankel (hw_anticausal(j,:))"2;
end;

[X,Sigma2]) = eig(hank2);
[junk,ii] = max(diag(Sigma2)};
x1 = X({:,ii);

sigmal = sqrt(Sigma2(ii,ii));

% compute the polynomials
for j=1:no,
Lambda_squiggle = hankel ((hw_anticausal(j,n(i)-1:-1:1) hw_causal(j,:)1);
Lambda_squiggle = Lambda_squiggle(n(i):-1:1,:);
% compute the estimated model
numl = x1‘’*Lambda_squiggle;
denl = [x1’ zeros(l,n(i))];

% remove common roots
if (isempty(roots_tolerance)),
[numl,denl] = minreal (numl,denl);
elseif (roots_tolerance(l)>=0)},
[numl,denl] = minreal (numl,denl, roots_tolerance(l)};
else,
num_zero_roots = min(sum({cumprod (fliplr (numl==0)})
sum{cumprod (fliplr (denl==0})
if {num_zero_roots>0),
numl (length (numl) + (1-num_zero_roots:0))
denl (length(denl) + {1l-num_zero_roots:0)}
end;
end;

Yo oo
)Y
[1;

[1;:

noan

Appendix A: Computer Codes 125

hinfid.m — Hec-based Identification (cont.)

% insert into outputs

num(i-1+j,size(num,2)+(l-length(numl):0)) = numl;

den({i-1+j,size(den,2)+(l-length(denl):0)) = denl;
end;

bound({i-1+no)/no) = sigmal;
end;

% shorten outputs if possible
while (all{num(:,1)==0 & den(:,1)==0)},
num{:,1}={];
den(:,1}=[];
if (isempty(num) | isempty(den)), break; end;
end;

end;
if (nargout<=1),

num = bound;
end;

Appendix A: Computer Codes 126

8.2.2 hinfid test.m — Quick Test of hinfid H_ -based Identification

hinfid_test does a quick test of the H,, identification function hinfid. It attempts to
identify the system H(z) = (3z2+3)/(5z2+2z+ 1) in the presence of noise using linear and
nonlinear algorithms with various window functions.

% hinfid_test.m

% a very quick test of the H-infinity identification

num={3 0 3]; den=[5 2 1]; % base system: H(z)=(32"2+3)/(5z72+22+1)
N=512; $ number of data points to use

n=20; % order of the identification
epsilon=0.1; % magnitude of the noise

% identify via linear and nonlinear algorithms with various windows

types=str2mat (‘'linear’, ‘nonlinear’);

windows=str2mat { ‘boxcar’, ’'triangular’, 'trapezoidal’, ‘cosine’,
‘hamming’, 'spline’, ‘hanning’, ‘blackman’) ;

$ simulate the original system
[H_exact,omega] =freqz (num, den, N, ‘whole’);
h_exact = real(ifft(H_exact));

% compute some noise

rand(‘'seed’,21217); % so we can repeat this exactly

Noise(1:N/2+1,1) = [0;exp(sqrt(-1)*rand(N/2-1,1)*2*pi);sign{rand-.5)];
Noise(N/2+2:N,1) = conj(Noise(N/2:-1:2,1));

% add the noise to the base system
H_noisy = H_exact + epsilon*Noise;
h_noisy = real(ifft(H_noisy));

% create some space

nums = zeros(length(n)*size(types,1l)*size(windows,1l),3*n);
dens = nums;

H = zeros(N,size(nums,1)};

bounds = zeros(1l,size(nums,1l));

% initialize some graphics
clf(‘reset’);
h = plot([0;0),H(1:2,:), 'k-");
set (gca, 'XLim’, {0 1]);
xlabel (*frequency_in_radians*T/pi’); ylabel(‘magnitude of model error’};
title(‘H-infinity ID of H(z)=(3z"2+3)/(5272+2z+1), noise magnitude 0.1');
co = get{gca, 'ColorOrder’);
co(all(co’'==1),:) = [};
co=(1 1 1;co];
if (size(co,1l)>1 & size(co,l)<size(windows,1}),
extras = size(windows,l) - size(co,l);:
co = [co; (l:extras)’/(extras+1l)*[1 1 1]);
end;
styles = str2mat(‘'-',’'-~',":','"=.");
hwaitbar = waitbar (0, ‘Doing identification ...’);

% loop through all configurations
for i=l:size(types,l),
this_style = deblank(styles(rem(i-1,size(styles,1))+1,:));
for j=l:size(windows, 1},
% do the identification
{numl, denl,b] = hinfid(h_noisy,1,deblank(types(i,:)),n,deblank(windows(3j,:))):
% insert into big storage
irows = (1l:length(n})+length(n)*((i-1)*size{windows,1)+j-1);
nums (irows, size(nums, 2)+{1l-size{numl,2):0)) = numl;
dens(irows,size(dens,2)+(1-size(denl,2):0)) = denl;
if (~isempty(b)), bounds(1l,irows)=b; end;
% compute and plot the magnitude of the model error in freq. domain
for k=1:length(n),
H{:,irows(k)) = freqz(numl,denl,N, ‘whole’);
set (h{irows(k)), ‘XData’,omega/pi, 'YData’,abs(H(:,irows(k))-H_exact)‘):;
end;

Appendix A: Computer Codes 127

hinfid_test.m — Quick Test of hinfid He--based Identification (cont.)

this_color = co(rem(j-1,size{co,1l})+1,:);
set (h(irows), 'LineStyle’, this_style, ‘Color’,this_color);
waitbar((i-1+j/size(windows, 1)) /size(types,1l)}:
end;
end;
close(hwaitbar):
legend(h([1+(0:size(types,1)—1)*size(windows,l)*length(n)
1+(0:size{windows,1l)-1)*length(n}l),
str2mat (upper (types) ,windows)) ;

Appendix A: Computer Codes 128

8.2.3 hinfid_examplel.m — Example I of H_-based Identification

hinfid_examplel runs the first example of H_-based identification. Its task is the iden-
tification of the simple single-input, single-output system H(z) = (3z2+3)/(5z22+2z+1).

% hinfid_examplel.m
echo on

% This runs the first H-infinity identification example
%
% The system is the discrete-time system H(z)=(3z"2+1)/(52%2+2z+1)

% load in past data if already run
datafile = ‘hinfid_exl’;
eval{‘'load(datafile);’, 'comp=1;"‘};

% set up some variables
scrn = 1; % change to 0 to do hardcopies

if (scrn),

gl = 1;
gz = -[1 1 1]5
else,
gl = 0:
= [(111];

% set line colors, styles, and widths

linestyle=str2mat{‘x‘,’:’,’'-.",'--','-'); linestyle=str2mat('-’,linestyle, linestyle);
linewidth= [16; 4 ;7 :;1;1 1 6 ; 2 ;8 ; 8; 81/8;

markersize= [6; 2.5; 6 ; 6 ; 6 6 ; 2.5; 6 ; 6 ; 6 ; 6];

graylevel=1-{ 1; 1;1;1;1;1; 4; 1 ; .4; .4; .41;
mask=(graylevel==0|graylevel==1|scrn);
graylevel (mask) = (l-graylevel (mask)):
graylevel = graylevel(:,[1 1 1]);

)
)

FEETEHTLUULBLRUBRABILR%%

% %
% windowing functions %
% %

FELLATAILBLLIHLTLUILLRLLS

nn=20; m=floor(nn/4); NN=4*nn;

[Kbox, Wbox] hinfid(ones(NN,1},1, ‘wind’,nn, ‘boxcar’);

[Ktri,Wtri] hinfid(ones(NN,1},1, 'wind’,nn, ‘triang’};

[Ktra,Wtra]l hinfid(ones(NN,1)},1, ‘wind’,nn, 'trapez’,m);

{Kham, Wham] hinfid(ones(NN,1},1, ‘wind’',nn, ‘hammin‘});

[Kspl,Wspl]} hinfid(ones(NN,1),1, ‘wind’,nn, ‘spline’ ,NN);

[Kcos,Wcos) hinfid(ones(NN,1),1, ‘wind’,nn, ‘cosine’);

clf{‘reset’};

h=plot (Kbox/nn,Wbox, ‘w-', Ktri/nn,Wtri,’'w--‘, Ktra/nn,Wtra,'wo’,
Kham/nn,wham, ‘w:’, Kspl/nn,Wspl,'w-.’, Kcos/nn,Wcos, 'wx');

axis([-1.5 1.5 -.1 1.11):

set(h(([(3 6]), 'MarkerSize’,4);

sxlabel (*\times {\i k}/{\i n}’); sylabel(‘'\times weight’);
labs = str2mat (‘boxcar’, ‘triangular’, [‘trapezoidal ({\i m)=’ num2str{m) *)‘],
‘Hamming’, [‘spline ({\i M)}=’' num2str (NN} ‘'}’'], ‘'cosine’)};

labs = setstr([ones(size(labs,1),1)*’'\times\10’ labs]);
[hax,hli,hte] = slegend([.54 .3],h,labs);

fn = ‘*hinfid_exl_0_windows’;

if (~scrn), drawnow; printsto(‘-deps’,(fn ‘.eps’])): end;

stitle([*\times {\i H}_{\infty} Identification Windowing Functions ({\i n}="
num2str (nn) *, {\i N}=' num2str(NN) *)‘]);

drawnow; if (scrn), pause; else, printsto{‘'-dps’,{(fn ‘'.ps’]): end;

Appendix A: Computer Codes 129

hinfid_examplel.m — Example I of Heo-based Identification (cont.)

LLEILBILVLRRLRY

% %

% Example I %

% %

FLILLALBILBRURS

if (comp),
N = 512; % number of points in response; must be even
n =[5 10 20 40 80}; % model orders
epsilon = 0.1; % noise magnitude in frequency domain

% simulate the original system

num=[3 0 3]; den={5 2 1);

{H_exact, omega}=freqz (num,den,N, ‘whole’);

rand(‘'seed’,21217); % so we can repeat this exactly

Noise(1:N/2+1,1) = [O;exp(sqrt(—l)*rand(N/Z—l,l)'2*pi);sign(rand—.S)];
Noise{(N/2+2:N,1) = conj(Noise(N/2:-1:2,1));

H_noisy = H_exact + epsilon*Noise;

h_exact real (ifft{H_exact)};

h_noisy real (ifft (H_noisy));

% compute pulse responses
[t,h_exact_stairs] = stairs(h_exact);
[t,h_noisy_stairs] = stairs(h_noisy};

% do the identification
[num_lin,den_lin]
{num_non, den_non, bounds_non)

hinfid(h_noisy, 1, ‘linear’ ,n, ‘triangular’);
hinfid(h_noisy,1, '‘nonlinear’,n, ‘triangular’};

% compute transfer functions
H_lin = zeros(N, length(n});
H_non = H_lin;
for i=1:length(n},
H_lin(:,i) = freqz(num_lin(i,:},den_lin(i,:),N, ‘whole’);
H_non(:,i) = fregz(mum_non(i,:},den_non{i,:) N, 'whole’);
end;

% pulse response

h_lin = zeros(N,length(n});
h_non = h_lin;

for i=1l:length{(n),

notzeros = ~cumprod(all({[num_lin(i,:);den_lin(i,:)}==0));

h_lin(:,i) = dimpulse(num_lin(i,notzeros),den_lin(i,notzeros),N);

notzeros = ~cumprod(all({num_non(i,:};den_non(i,:)]==0}};

h_non{:,i) = dimpulse(num_non(i,notzeros),den_non(i,notzeros),N);
end;

% error in response to random input (relative to exact RMS)
random_input = randn(N,1);

hr_lin = zeros(N,length(n});

hr_non = hr_lin;

for i=1l:length(n),

notzeros = ~cumprod(all([num_lin(i,:);den_lin(i,:)]::O));
hr_lin(:,i) = dlsim{num_lin(i,notzeros),den_lin(i,notzeros),random_input);
notzeros = ~cumprod(all{[num_non(i,:);den_non(i,:}}==0));
hr_non(:,i) = dlsim(num_non(i,notzeros),den_non(i,notzeros),random_input);

end;
hr_exact = dlsim(num,den,random_input};

comp=0;
save(datafile);
end;

% plot the pulse responses

clf(‘reset’};

h=plot (t,h_noisy_stairs, 'y-',t, h_exact_stairs, ‘w-");
set (h(1l), 'Color‘,gl+g2*.65, 'LineWidth’,1);

set (gca, ‘XLim*, [0 50]);

Appendix A: Computer Codes 130

hinfid_examplel.m — Example I of He-based Identification (cont.)

sxlabel (*\times time {\i k}’); sylabel(‘'\times Pulse Response’};

[hax,hli,hte] = slegend({.58 .65],h([2 1]),str2mat(‘\times\10System response’,
‘\times\10with noise, {\i \epsilon})=0.1'});

fn = ‘hinfid_exl_1_pulseresponse’;

if (~scrn), drawnow; printsto('-depsc’,{fn ‘.eps‘']); stfixps({fn ‘.eps’]); end;

stitle(['\times Pulse Response of Original System and with Noise’]});:

drawnow; if (scrn), pause; else, printsto(‘-dpsc’,{fn ‘.ps’)); stfixps([(fn ‘.ps’'}); end;

% print out the models
for i=find(n(:)‘<=10),

notzeros = ~cumprod(all{[num_lin{i,:);den_lin(i,:)1==0));

disp(tf2str(num_lin(i,notzeros),den_lin(i,notzeros), ‘z’,0,
[‘F_lin_’ num2str(n(i)) *(z) = *1)};

notzeros = ~cumprod{all{[num_non(i,:);den_non(i,:)1==0));

disp(tf2str(num_non{i,notzeros),den_non(i,notzeros),‘'z’,0,
{*F_nonlin_' num2str{(n{(i)) ‘(z) = *1)});

end;
bounds_non

% plot the transfer functions
clf(‘reset');
h=plot (omega/pi, abs (H_exact),omega/pi,abs(H_lin),omega/pi,abs(H _non));
l1=line(.1, .1, ‘Color’, 'k’); set{l, '‘XpData’, (], 'YData’,[], '2Data’,[]};
set (gca, ‘XLim’, [0 1]);
for i=l:length(h), set(h(i),’LineStyle’,deblank(linestyle(i,:)), 'Color’,graylevel(i,:),
‘LineWidth’, linewidth (i), 'MarkerSize’ , markersize(i)); end;
sxlabel (*\times normalized frequency {\il\omega T}/{\i\pi}’):;
sylabel (‘\times Transfer Function Magnitude’);
labs = str2mat(‘EXACT’',’'{ }‘,‘Linear’, ‘Nonlinear’,’'{ }',’'{\i n}= 5,
*{\i n}=10’,'{\i n}=20', ' {\1i n}=40’,'{\i n}=80");
labs = setstr([ones(size(labs,1),1)*'\times\10’ labs])};
[hax,hli,hte] = slegend([.45 .71,[(h{1);1;h(6);h{(11});1;h(2:6)],labs);
fn = *hinfid_exl_2_transfunmag’;
if (~scrn), drawnow; printsto(‘'-depsc’,[fn '.eps’]); stfixps([fn ‘'.eps’]l); end;
stitle(['\times Transfer Function of Exact System and Identified Models’]);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘'.ps‘’]l); stfixps{([fn *.ps’]); end;

clf(‘reset’);
h=plot (omega/pi, angle(H_exact)/pi*180,

omega/pi,angle(H_lin)/pi*180,

omega/pi,angle(H_non)/pi*180);
1=line(.1,.1,'Color’,’'k'); set(l, 'XData’,[],’'YData’, [}, 'ZData’,[]);
axis([0 1 -120 160]);
for i=1l:length(h), set(h(i), ‘LineStyle’,deblank(linestyle(i,:}), 'Color’,graylevel(i,:),

‘LineWidth’, linewidth(i), ‘MarkerSize' ,markersize(i)); end;
sxlabel {*\times normalized frequency {\i\omega T}/{\i\pi}'};
sylabel (‘\times Transfer Function Phase [degrees]‘);
labs = str2mat('EXACT’,’{ }’,‘Linear’, ‘Nonlinear’,'{ }’,’{\i n}= 5°,
{\i n}=10’,’{\1i n}=20','{\1 n}=40’,{\i n}=80");

labs = setstr([ones(size(labs,1),1)*’'\times\10’ labs]);
(hax,hli,hte] = slegend([.3 .7],{h(1});1;h{6);h(11);1;h(2:6)],labs};
fn = ‘hinfid_exl_3_transfunpha“’;
if (~scrn), drawnow; printsto(‘-depsc’,{fn '.eps‘]); stfixps({fn '.eps’])); end:
stitle(['\times Transfer Function of Exact System and Identified Models']);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps’]l); stfixps([(fn '.ps’]); end;

% error in the transfer function

clf(‘reset’);

h=plot (omega/pi, abs (H_exact*ones (1, length(n))-H_lin},
omega/pi,abs (H_exact*ones (1, length(n))-H_non));

l=line(.1,.1,’Coloxr’, ‘k’}; set(l, 'XData’,[],’'YData’,[], 'ZData’, []};
set (gca, ‘XLim’, [0 1]);
for i=2:length(h)+1, set{(h(i-1l),‘LineStyle’,deblank(linestyle(i,:}), Color’,

graylevel (i, :), ‘LineWidth’, linewidth(i), 'MarkerSize',markersize(i)); end;
sxlabel (‘\times normalized frequency {\i\omega T}/ {\i\pi}*");
sylabel (‘\times Magnitude of Transfer Function Error‘):;
labs = str2mat(‘Linear’, ‘Nonlinear’,‘{ }',’{\i n)= 5, ...
*{\1 n}=10‘,°{\i n}=20', {(\i n)=40', '{\i n}=80");
labs = setstr{{ones(size(labs,1),1)*’\times\10' labs]);
[hax,hli,hte] = slegend((.3 .7),[h(5);h(10);1;h(1:5)],1labs);

Appendix A: Computer Codes 131

hinfid_examplel.m — Example I of Ho-based Identification (cont.)

fn = ‘hinfid_exl_4_transfunerr’;

if (~scrn), drawnow; printsto('-depsc’,[fn ‘.eps’]); stfixps([fn ‘.eps’]); end;
stitle([‘\times Transfer Function Error of Identified Models'l});

drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn ‘.ps’]); stfixps([fn ‘.ps‘}): end;

delete (hax) ;
axis([0 1 0 .12});
set (h{[1 6]),'Visible’, ‘off’};

{hax,hli,hte] = slegend({.23 .79]1, [h(5);h{10);1;h(2:5)],1labs(([1:3 5:8],:));
drawnew; if {(scrn), pause; else,

fn = ‘hinfid_ex1_5_transfunerr2’;

printsto(‘-dpsc’, [fn *.ps’']); stfixps((fn *.ps’]);

stitle('’});

drawnow; printsto(‘-depsc’,[fn ‘.eps’]); stfixps([fn ‘.eps’l); end;

$ pulse response
clf(‘reset’);
h=plot {(0:N-1, [h_exact h_lin h_non]);
1=line(.1, .1, ‘Color‘,‘'k’); set (1, ‘XData‘, {), ‘YData’, [), ‘ZData’, []);
set (gca, ‘XLim’, [0 20]);
for i=1l:length(h), set (h(i}), ‘LineStyle’,deblank(linestyle(i,:)), ‘Color’,graylevel(i,:),
‘LineWidth'’, linewidth{i), ‘MarkerSize’ ,markersize(i)); end;
sxlabel {‘*\times time {\i k)}’); sylabel({‘'\times Pulse Response’);
labs = str2mat (‘EXACT’,’{ }',‘Linear’, ‘Nonlinear‘,‘{ }’,’{\i n}= 5’,
*{\i n)=10’, ' {\i n}=20’,’{\i n}=40",’{\i n}=80");
labs = setstr({ones(size(labs,1),1)*‘\times\10’ labsl);
{hax,hli,hte] = slegend([.45 .71, [h(1);1;h(6):h{(11);1;h(2:6)],labs);
fn = ‘hinfid_exl1l_6_pulseresp’:
if (~scrn), drawnow; printsto(‘-depsc’, [fn '.eps’l); end;
stitle(['\times Pulse Response of Exact System and Identified Models‘]});
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn '.ps‘’]); end;

% absolute error in pulse response

clf('reset’);

=plot(0:N—1,abs(h_exact(:,ones(l,Z'length(n)))—[h_lin h_nonl));

l=line(.1,.1,‘Color’, ‘k’); set(l,’'XData’,[],'YData’,[], ZData’,[(]};

set (gca, ‘XLim’, {0 20]);:

for i=2:length{h)+1, set (h(i-1), 'LineStyle’,deblank(linestyle(i,:)}, ‘Color’,
graylevel(i,:),‘Linewidth',linewidth(i),'Markersize’,markersize(i)); end;

sxlabel (*\times time {\i k)}'); sylabel('\times Pulse Response Absolute Error’};

labs = str2mat(‘Linear’, 'Nonlinear’,’'{ }‘,’{(\i n}= 5', ...
*{\i n}=10, ' {\i n}=20",’{\i n}=40",’{\i n}=80");

labs = setstr([ones(size(labs,1),1)*’'\times\10’ labs]};

[hax,hli,hte]) = slegend([.6 .55], (h(5);h(10);1;h(1:5)],1abs}:

fn = ‘hinfid_exl_7_pulseresperr’;

if (~scrn), drawnow; printsto(‘-depsc’,{fn '.eps’]}; end;

stitle({'\times Pulse Response Error of Identified Models']};

drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps’]}; end;

% error in response to random input (relative to exact RMS)
clf(‘reset’);
h=plot(0:N-1,abs(hr_exact(:,ones(1l,2*length(n)})- .
{hr_lin hr_non)) /sqrt (sum(hr_exact.”2)/length(hr_exact}});

1=line(.1,.1, ‘Color’, 'k’); set(l,'XData’', [}, YData’, (], ZData’,[]};
set (geca, 'XLim’, [0 50]});
for i=2:length(h)+1, set (h(i-1), ‘LineStyle’,deblank(linestyle(i,:)), ‘Color’, .

graylevel(i,:),’Linewidth',linewidth(i),'Markersize',markersize(i)); end;
sxlabel(‘*\times time {\i k}‘); sylabel('\times Relative Response Error’);
labs = str2mat(‘Linear’, ‘Nonlinear‘,’{ }’,’{\i n}= 5’, ...

“{\i n}=10',’{\i n}=20",'{\i n}=40", " {\i n}=80");
labs = setstr{[ones{size(labs,1),1)*’'\times\10’ labs])):
[hax,hli,hte] = slegend([.8 .77],(h{(5);h(10);1;h(1:5})],labs};
fn = *‘hinfid_exl_B8_randresperr’;
if (~scrn), drawnow; printsto(‘-depsc’,[(fn '.eps’]); end;
stitle([{'\times Response Error (relative to exact RMS)°’

v of Identified Models with Random Input‘]};

drawnow; if {(scrn), pause; else, printsto('-dpsc’,[fn *.ps’']}; end:;

% relative difference between linear and nonlinear response to random input
clf(*reset’);

Appendix A: Computer Codes 132

hinfid_examplel.m — Example I of Heo-based Identification (cont.)

h=plot (0:N-1,abs((hr_lin-hr_non)*2./(hr_lin+hr_non)});
set (gca, 'XLim’, [0 50]);
for i=2:length(h)+1, set{(h(i-1), ‘LineStyle’, deblank{linestyle(i,:}), ‘Color’,
graylevel(i,:), ‘LineWidth’, linewidth(i}), ‘MarkerSize’,markersize(i)); end;
set (h(l), ‘LineStyle’,deblank({linestyle(ll,:)}, ‘Color’,graylevel(1l,:},
‘LineWidth’, linewidth(7), 'MarkerSize’,markersize(11));
sxlabel (*\times time {\i k}’); sylabel('\times Relative Response Difference’);
labs = str2mat{(*{\i n)= 5‘,'{\i n}=10','{\i n}=20‘,’'{\i n)=40',‘{\1i n}=80");
labs = setstr([ones(size{labs,1},1)*’'\times\10’ labs]);
[hax,hli,hte] = slegend({.3 .7),h(1:5),labs);
fn = *hinfid_ex1_9_randrespdiff’;
if (~scrn), drawnow; printsto(‘'-depsc’,{fn ‘.eps’]); end;
stitle{[*'\times Relative Response Difference between Linear and °
*Nonlineear Identified Models with Random Input’]});
drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn ‘.ps’l); end;

Appendix A: Computer Codes 133

8.2.4 hinfid_example2.m-— Example II of H_-based Identification

hinfid_example2 runs the second example of H,-based identification. Its task is the
identification of a six degree of freedom system with single input and six outputs.

$ hinfid_example2.m
echo on

% This runs the second H-infinity identification example
%
% The system is a 6DOF train with identical masses, springs, and dashpots.

% load in past data if already run
datafile = ‘hinfid_ex2’;
eval (‘load(datafile);’, ‘comp=1;"‘};

% set up some variables
scrn = 1; % change to 0 to do hardcopies

if (scrm),

gl = 1;

g2 = -[111);
else,

gl = 0;

g2 = [111);
end;

% set line colors, styles, and widths

linestyle=str2mat('x’,’:’,’-.’,'==',’-'}; linestyle=str2mat(‘'-‘,linestyle, linestyle);
linewidth= (16; 4 ;7;1;1;1; 6 ;2 ;8 ;8 ;81/8;

markersize= [6; 2.5; 6 ; 6 ; 6 ; 6 ; 2.5; 6 ; 6 ; 6 ; 6 1;

graylevel=1~(1; i1;1;1;1;1; 4; 1 ; .4; .4; .4]1;

mask:(graylevel==0|grayleve1==1|scrn);
graylevel (mask) = (l-graylevel (mask));
graylevel = graylevel{:,[1 1 1]};

LTI LLIBLILBLY
% %
% Example II %
% %
KEBXLHABLLVLLLLS
if (comp),
% some parameters
T = .8; % sampling time
nn = 6; % # of degrees of freedom in real system
input_number = 1; % because we can only do SIMO H-inf ID problems
N = 2048; % number of points in pulse response
n = 2*nn*(2 5 10 20 40); % model orders
window = ‘trapezoidal’; % window to use in identification
epsilon = 0.1; % noise rms relative to pulse response rms

% the exact system specifications
[A,B,C,D,MM,CC,KK,PP,L,W,2) = ndof(6,T);
B B(:, input_number);

D D(:, input_number);

non

% simulate the system
h_exact = dimpulse(A,B,C,D,1,N);

% create the noise

rand{‘*seed’,21217); % so we can repeat this exactly

Noise(1:N/2+1,1l:nn) = [zeros{(l,nn); .
exp(sqgrt(-1)*rand(N/2~1,nn)*2*pi);
sign(rand(l,nn}-.5)];

Appendix A: Computer Codes 134

hinfid_example2.m — Example II of He-based Identification (cont.)

Noise(N/2+2:N,1:nn) = conj{Noise(N/2:-1:2,1:nn));
noise = real {(ifft(Noise});
h_noisy = h_exact + noise*epsilon*diag(sqrt(sum(h_exact."2)./sum(noise.”2)));

% do the identification
bounds_non=zeros{size(n));
for i=1l:length(n), % loop to save memory
if (n(i)<150), roots_tolerance=[]; else, roots_tolerance=-1; end;
{num_linl,den_1linl) = hinfid{(h_noisy,nn, 'linear’ e
n{i),window, [],roots_tolerance);
{num_nonl,den_nonl,bounds_non(i})] = hinfid(h_noisy,nn, ‘nonlinear’,
n(i),window, [],roots_tolerance);

if (i==1),
num_lin = num_1linil;
den_lin = den_linl;
num_non = num_nonl;
den_non = den_nonl;
else,
nz = size(num_linl,2) - size(num_lin,2);

num_lin = [zeros(size(num_lin,1),nz) num_lin;
zeros(size{num_linl,1),-nz) num_1linl];
nz = size(den_linl,2) - size(den_lin,2):

den_lin = [zeros(size{den_lin,1l),nz) den_lin;
zeros(size(den_linl,1l),-nz) den_linl];
nz = size{num_nonl,2) - size(num_non,2);

num_non = [zeros(size(num_non,1l),nz) num_non;
zeros (size(num_nonl,1),-nz) num_nonl];
nz = size(den_nonl,2) - size{(den_non,2};
den_non = [zeros(size(den_non,1l),nz) den_non;
zeros(size(den_nonl,1l),-nz) den_nonl];
end;
end;

comp=0;

save (datafile);
end;
bounds_non

% plot pulse response of one output
output_number = 3;
clf(‘reset’);
h=plot (0:N-1, (h_noisy(:,output_number) h_exact(:,output_number)], 'w-');
set(h(1), ‘Color’,gl+g2*.65, 'LinewWwidth’,1);
axis ([0 N-1 [-1 1)*max(abs(get(gca, 'YLim’)}})1};
sxlabel(*\times time {\i k}’); sylabel(‘'\times Pulse Response’};
[hax,hli,hte] = slegend([.7 .7],h{[2 1]),str2mat{('\times\10System response’, ...
‘\times\10with noise, {(\i \epsilon}=0.1'));
fn = ‘hinfid_ex2_1_pulseresponse’;
if (~scrn), drawnow; printsto('-depsc’,[fn ‘.eps’]); stfixps([fn ‘.eps’]l); end;
stitle(['\times Pulse Response of Mass #' num2str{output_number)
* of Original System and with Noise’]);
drawnow; if (scrn), pause; else, printsto('-dpse’, {fn '.ps’}); stfixps({fn ‘.ps’])); end;

% compute transfer functions
NN = 4096;
H lin = zeros(NN,nn*length(n));
H_non = H_lin;
for i=l:nn*length(n),
H_lin{(:,i) = fregz(num_lin{(i,:),den_lin(i,:),NN)
H_non(:,1i) freqz (num_non(i, :),den_non(i, :),NN)
end;
{num_exact,den_exact) = ss2tf(A,B,C,D,1};
H_exact = zeros(NN,nn);
for i=1:nn,
[H_exact(:,1i),omega] = freqz(num_exact(i,:),den_exact,NN);
end;

% plot the exact transfer functions and the modal transfer functions
clf(‘reset’);
ww=[1l;1)*sort (W(:) *T/pi); ww=ww(:)}; mm=1:length(ww); mm=10."(200*[(rem(mm,6 4}-1>0}-.5]);

Appendix A: Computer Codes 135

hinfid_example2.m — Example II of Heo-based Identification (cont.)

subplot(2,1,1); h=semilogy(ww,mm, ‘y--‘,omega/pi,abs(H_exact), 'w-"'};

set (h(1), 'LineWwidth’,1, ‘Color’, .4*{1 1 1]1); set(h(2:length(h)), ‘LineWidth’,.125);
axis([0 .6 .02 100});

set (gca, 'XTickLabels', ') ;

sylabel (‘\times Transfer Function Magnitude’);

subplot (2,1,2); h=semilogy(ww,mm, ‘y--',omega/pi,abs(H_exact*PP.’), 'w-");

set (h(1), ‘LineWidth’,1, 'Color’,.4*{1 1 11); set(h(2:length(h)), 'LineWidth’,.125);
axis ([0 .6 .02 100));

sxlabel (‘\times normalized frequency {\ilomega T}/{\i\pi}’);

sylabel (*\times Modal Transfer Function Magnitude’);

subplot(2,1,1);

fn = *hinfid_ex2_2_tfmag_exact’;

if (~scrn), drawnow; printsto('-depsc’,[fn ‘.eps’]); stfixps({fn *.eps’]); end;
stitle('\times Transfer Function of Exact System and to Modal Displacements’);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps‘]): stfixps([fn '.ps’]); end;

% plot some of the transfer functions
nni=1:5;
for output_number={1 3];
clf(‘reset’);
h=semilogy (omega/pi, abs (H_exact (:,output_number)}),
omega/pi,abs (H_lin(:, (nni-1)*6+output_number)},
omega/pi,abs (H_non(:, (nni-1)*6+output_number)});
axis([0 .6+10*eps .01 40]):
1=line(.1,.1, ‘Color’,‘k’); set(l, ‘XData‘, (], ‘YData’, [],'ZData’,[]);
for i=1:length(h), set(h(i),’'LineStyle’, deblank(linestyle(i,:)), 'Color’,graylevel(i,:},
‘LineWidth’, linewidth(i), 'MarkerSize’ ,markersize(i)); end;
sxlabel (‘\times normalized frequency {\i\omega T}/{\i\pi}*):
sylabel ('\times Transfer Function Magnitude’};
labs = str2mat(‘'EXACT’,'{ }',‘Linear’, ‘Nonlinear’,’{ }’',’{\i n}= 24°,
‘{\i n}= 60’,'{\i n}=120’,’{\i n)}=240’, ' {\i n}=480"});
labs = setstr{[ones(size(labs,1),1)*‘\times\10’ labs]);
(hax,hli,hte] = slegend{([.81 .76],[h(1);1;h(6);h{(11);1:;h(2:6)],1abs);
fn = [‘hinfid_ex2_3_tfmags’ num2str (output_number)];
if (~scrn), drawnow; printsto(‘-depsc’,[fn ‘.eps’]); stfixps({fn ‘.eps’l): end;
stitle({'\times Transfer Function #' num2str(output_number)
' of Exact System and Identified Models’]};
drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn '.ps’']); stfixps((fn “.ps'l); end;

clf(‘reset’});

h=semilogy (omega/pi,abs (H_exact (:,output_number}),
omega/pi,abs(H_lin(:, (nni-1)*6+output_ number))),

axis{([0 .6+10*eps .01 40]);

1=line(.1,.1,‘'Color’, ‘k’); set{(l, 'XData’,[]}, YData’,[],’2ZData’,[]};

for i=l:length(h), set(h(i), 'LineStyle’,deblank(linestyle(i,:)), ‘Color’,graylevel(i,:),
‘LineWidth’, linewidth (i), ‘MarkerSize’ ,markersize(i})); end;

set (h(2), 'LineStyle’,deblank{linestyle(11,:)), 'Color’,graylevel(11l,:),

‘LineWidth’,linewidth(7), ‘MarkerSize’ ,markersize(11));
sxlabel (*\times normalized frequency {\i\omega T}/{\i\pil’);
sylabel (*\times Transfer Function Magnitude’);
labs = str2mat(‘EXACT’,’'{ }',’'{\i n}l= 24°‘, ...

“{\i n}= 60','{\i n}=120',’{\i n}=240’', " {\i n}=480"');

labs = setstr([ones(size(labs,1),1)*’'\times\10‘ labs]):
[hax,hli,hte) = slegend([.81 .76],[h(1);1;h(2:6)],1labs);
fn = [*hinfid_ex2_31_tfmags’' num2str (output_number)];
if (~scrn), drawnow; printsto(‘'-depsc’,[fn ‘.eps’]}); stfixps([fn ‘.eps‘]}; end;
stitle([*\times Transfer Function #‘' num2str {output_number)

* of Exact System and Linear Identified Models’]}:
drawnow; if {scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps’)); stfixps{(fn ‘.ps’]); end;

clf{‘reset’);

h=semilogy (omega/pi, abs (H_exact {:,output_number))},
omega/pi,abs(H_non(:, (nni-1)*6+output_. number))).

axis ([0 .6+10*eps .01 401);

l=line(.1,.1, 'Color‘,'k’); set(l,’'XData’, (], '¥YData’, [}, 2Data’,[]);

for i=l:length(h), set(h(i),‘LineStyle’,deblank{linestyle(i,:)), ‘Color’,graylevel(i,:),
‘LineWidth’,linewidth{i), ‘MarkerSize’ ,markersize(i)); end;
set (h(2), ‘LineStyle’,deblank(linestyle(11,:)}, ‘Color’,graylevel(ll,:},

‘LineWidth’, linewidth(7), ‘MarkerSize' , markersize(11l)});
sxlabel (*\times normalized frequency {\ilomega T}/{\i\pi}');:

Appendix A: Computer Codes 136

hinfid_example2.m — Example II of He-based Identification (cont.)

sylabel (*\times Transfer Function Magnitude’);
labs = str2mat (*EXACT’,‘{ }‘,'{\i n}= 24', ...
*{\i n)= 60’,'{\i n}=120',{\i n}=240’,’'{\i n}=480");

labs = setstr([ones{size(labs,1},1)*’\times\10’ labs]};
[hax,hli,hte] = slegend([.81 .79],{h(1);1;h(2:6)],labs);
fn = [‘hinfid_ex2_3n_tfmags’ num2str (output_number)];
if (~scrn), drawnow; printsto('-depsc’,[fn ‘'.eps’]); stfixps({fn ‘.eps’]); end;
stitle([*\times Transfer Function #‘ num2str (output_number)

* of Exact System and Nonlinear Identified Models’));
drawnow; if (scrn), pause; else, printsto{(‘-dpsc’,(fn ‘'.ps’}); stfixps({fn ‘.ps’]); end;

clf(‘reset’);
h=plot (omega/pi, 180/pi*angle(H_exact (:,output_number)},
omega/pi,180/pi*angle(H_lin(:, (nni-1)*6+output_number))},
omega/pi,180/pi*angle(H_non(:, (nni-1)*6+output_number)));
set (gca, ‘XLim’, {0 .6+10*eps]};
l1=1line(.1,.1, ‘Color’,‘k’); set(l, ‘XData’, [}, 'YData’, [],’ZData’,[]):
for i=1l:length(h), set(h(i), 'LineStyle’,deblank(linestyle(i,:)), ‘Color’,graylevel(i,:),
‘LineWidth’,linewidth(i)}, 'MarkerSize’ ,markersize(i)); end;
sxlabel (' \times normalized frequency {\i\omega T}/{\i\pi}‘):
sylabel (*\times Transfer Function Phase [degrees]’);
labs = str2mat (‘EXACT’,‘{ }’,’'Linear’,‘Nonlinear’,’{ }‘',’{\i n)= 24°,
*{\i n}= 60‘,'{\i n}=120',’{\i n}=240",’'{\1i n}=480");

labs = setstr{[ones(size(labs,1),1)*’\times\10’ labsl);
if (output_number==1), legpos=[.58 .7]; else, legpos=[.53 .3]; end;
[hax,hli,hte] = slegend(legpos, (h(l);1;h(6);h(11);1;h(2:6)],labs);
fn = {(*hinfid_ex2_4_tfphas’ num2str (output_number)];
if (~scrn), drawnow; printsto(‘-depsc’,[fn ‘.eps’]); stfixps({fn ‘.eps’]); end;
stitle(['\times Transfer Function #' num2str (output_number)

* of Exact System and Identified Models’]);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,{fn ‘.ps’]); stfixps({fn ‘.ps‘]); end;

clf(‘reset’);
h=plot (omega/pi, 180/pi*angle (H_exact (:,output_number)}, e
omega/pi,180/pi*angle(H_lin(:, (nni-1)*6+output_number)));
set (gca, ‘XLim’, {0 .6+10%*eps]);
1=line(.1,.1, ‘Color’, ‘k’); set(l,‘'XData’, [],’YData’,[],’2ZData’, []);
for i=1:length(h), set(h(i), 'LineStyle’,deblank(linestyle(i,:)), 'Color’,graylevel(i,:),
‘LineWidth’, linewidth(i), ‘MarkerSize’ ,markersize(i)); end;
set (h{2), ‘LineStyle’,deblank{linestyle(1l,:)), ‘Color’,graylevel(ll,:},
‘LineWidth’, linewidth(7), ‘MarkerSize’,markersize(11));
sxlabel (*\times normalized frequency {\i\omega T}/{\i\pi}*):
sylabel (‘\times Transfer Function Phase [degrees]’);
labs = str2mat(‘EXACT’,’'{ }’',’{\i n}= 24', ...
*{\i n}= 60’,'{\i n}=120",’{\i n}=240’,’'{\i n}=480");
labs = setstr({[ones({size(labs,1),1)*’'\times\10’ labs]);
if (output_number==1), legpos=[.58 .7]; else, legpos=[.53 .3}; end;
[hax,hli,hte}] = slegend{legpos, [h(1l};:;1;h{(2:6)], labs);
fn = [‘hinfid_ex2_41_tfphas’ num2str (output_number)];
if (~scrn), drawnow; printsto('-depsc’,{fn ‘.eps’]); stfixps([fn '.eps‘]l); end;
stitle(['\times Transfer Function #’' num2str(output_number)
* of Exact System and Linear Identified Models’l);
drawnow; if (scrn), pause; else, printsto('-dpsc’,[fn '.ps’]); stfixps({fn *.ps’]); end;

clf(‘reset’);

h=plot (omega/pi,180/pi*angle (H_exact(:, output_number)), .
omega/pi,180/pi*angle(H_non(:, (nni-1)*6+output_number))});

set (gca, 'XLim’, [0 .6+10*eps]);

1=line(.1,.1,’Color’,'k’}); set(l, ‘XData’, [}, ‘YData',[], '2ZData’,{]}):

for i=1l:length(h), set(h{i),’LineStyle’,deblank(linestyle(i,:)), ‘Color‘,graylevel(i,:),
‘LineWidth’, linewidth (i), ‘MarkerSize’,markersize(i)); end;
set(h(2), '‘LineStyle’,deblank(linestyle(11,:)), ‘Color’,graylevel (11,:}),

‘LineWidth’, linewidth(7), 'MarkerSize’,markersize(11));
sxlabel (*\times normalized frequency {\i\omega T}/{\i\pi}');
sylabel {*\times Transfer Function Phase [degrees]’);
labs = str2mat (‘EXACT’,'{ }’,’{\i n}= 24, ...

*{\i n)= 60‘,’{\i n}=120",'{\1 n}=240', ' {\i n}=480"');

labs = setstr({ones(size(labs,1},1)*’\times\10’ labs]);
if (output_number==1), legpos=[.58 .7); else, legpos=[.53 .3]; end;
[hax,hli, hte) = slegend(legpos,[h{1l);1;h(2:6)},labs);

Appendix A: Computer Codes 137

hinfid_example2.m — Example II of Heo-based Identification (cont.)

fn = [‘hinfid_ex2_4n_tfphas’ num2str (output_number)];
if (~scrn), drawnow; printsto('-depsc’,(fn ‘.eps’]); stfixps([fn '.eps’]); end;
stitle([‘'\times Transfer Function #’ num2str (output_number)
' of Exact System and Nonlinear Identified Models‘]};
drawnow; if (scrn), pause; else, printsto(‘-dpsc‘,{fn ‘.ps’)); stfixps([fn ‘.ps’])}; end;

clf(‘reset’):
h=semilogy (omega/pi,abs (H_exact {:,output_number) *ones(size(nni}) -
H_lin(:, (nni-1)*6+output_number)),
omega/pi,abs (H_exact (:,output_number) *ones (size(nni})) -
H_non(:, (nni-1)*6+output_number))};
axis ({0 .6+10*eps 5e-5 20])

l=line(.1,.1, 'Color‘,’k’}); set{l, XData‘’, (], 'YData’,[], 'ZData’,{]};
for i=2:length(h)+1, set(h(i-1),‘LineStyle’,deblank(linestyle(i,:}), ‘Color’, .
graylevel (i, :), ‘LineWidth’,linewidth(i), ‘MarkerSize’ markersize(i)): end;

sxlabel ('\times normalized frequency {\i\omega T}/{\i\pi}');
sylabel (*\times Transfer Function Error Magnitude’);
labs = str2mat(‘Linear’, ‘Nonlinear’,‘{ }’,’{\i n}= 24", ...
*{\i n)= 60‘,’{\i n}=120','{\i n}=240‘,'{\i n}=480");

labs = setstr([ones(size(labs,1),1)*'\times\10’ labs]);
[hax,hli,hte] = slegend([.81 .79],(h{5);h{10);1;h(1:5)],1labs);
fn = [‘*hinfid_ex2_5_tfmagserr’ num2str (output_number)];
if (~scrn), drawnow; printsto(‘-depsc’,{fn '.eps’']); stfixps([fn '.eps‘]): end;
stitle(['\times Transfer Function #’ num2str (output_number)

' Error of Identified Models’]);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps’]); stfixps([fn '.ps’]); end;

clf(reset’);
h=semilogy (omega/pi, abs (H_exact{:,output_number)*ones(size(nni)}-
H_lin(:, (nni-1)*6+output_number)));
axis ([0 .6+10*eps 5e-5 20])
l=line(.1,.1, 'Color’, ‘k’); set(l,’XData’,[]),‘YData’,[],‘ZData’,[]);
for i=2:length(h)+1, set(h(i-1), 'LineStyle’,deblank{linestyle(i,:)}, ‘Color’, .
graylevel (i, :), ‘LineWidth’,linewidth{i), '‘MarkerSize’,markersize(i)); end;
set(h(1l), ‘LineStyle’,deblank(linestyle(11,:)), 'Color’,graylevel (11,:},
‘Linewidth’,linewidth(7), ‘MarkerSize’ ,markersize(1l));
sxlabel (‘\times normalized frequency {\i\omega T}/{\i\pi}’):
sylabel (‘\times Transfer Function Error Magnitude’);
labs = str2mat('{\i n}= 24’', ...
*{\i n}= 60’,'{\i n}=120,’{\i n}=240",'{\i n}=480");
labs = setstr{[ones({size(labs,1},1)}*‘\times\10‘ labs]);
[hax,hli,hte) = slegend([.81 .81],{h(1:5)],1labs):
fn = {‘*hinfid_ex2_51_tfmagserr’ num2str (output_number)];
if (~scrn), drawnow; printsto(‘'-depsc’,[fn *.eps’]); stfixps(({fn '.eps’]}; end;
stitle(['\times Transfer Function #‘ num2str{output_number)
' Error of Linear Identified Models’]);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps’]); stfixps([fn '.ps’]); end;

clf{‘reset’};
h=semilogy (omega/pi,abs (H_exact (:,output_number) *ones{size(nni))-
H_non(:, {(nni-1)*6é+output_number)});
axis([0 .6+10*eps 5e-5 20])
l=line(.1,.1,’Color’, 'k’); set(l, ‘XData’,[], 'YData’, [}, ’2Data’,[]):
for i=2:length(h)+1, set(h(i-1), ‘LineStyle’, deblank(linestyle(i,:)}, Color’,
graylevel(i,:), ‘LineWidth’,linewidth(i), 'MarkerSize’ , markersize(i}); end;
set(h(1), ‘LineStyle’,deblank{linestyle(1l,:}), 'Color’,graylevel(1ll, :},
‘LineWidth',linewidth({7), ‘MarkerSize’,markersize(ll)});
sxlabel {*\times normalized frequency {\i\omega T}/{\i\pi}‘');
sylabel (*\times Transfer Function Error Magnitude’);:
labs = str2mat('{(\i n}= 24°, ...
“{\i n}= 60, {\i n}=120‘,’'{\i n}=240",‘(\i n}=480");
labs = setstr((ones{size(labs,1),1)*’'\times\10’ labsl}};
[hax,hli,hte] = slegend([.81 .81}, [h(1:5)],labs);
fn = [‘hinfid_ex2_Sn_tfmagserr’ num2str{output_number)];
if (~scrn), drawnow; printsto{‘-depsc’,(fn '.eps’']); stfixps([fn '.eps‘]); end;
stitle([‘\times Transfer Function #’' num2str (output_number)
* Error of Nonlinear Identified Models’]);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn *.ps’]); stfixps([(fn '.ps’]); end;

clf(‘reset’);

Appendix A: Computer Codes 138

hinfid_example2.m — Example II of Heo-based Identification (cont.)

end;

h=semilogy(omega/pi,abs(H_lin(:, (nni-1)*6+output_number) -
H_non(:, (nni-1)*6+output_number)));

axis([0 .6+10%*eps .0003 .2])
1=1line(.1,.1,'Color’,'k’); set(l,'XpData’,[),’'YData’,[]),‘ZDbata’,[]);
for i=2:1length(h)+1, set(h(i-1), 'LineStyle’,deblank(linestyle(i,:)), ‘Color’, .

graylevel(i,:), 'LineWidth’, linewidth(i), ‘MarkerSize’ ,markersize(i)); end;
set(h(l), ‘LineStyle’,deblank(linestyle(1ll,:)), ‘Color’,graylevel (11, :),

‘LineWidth’, linewidth(7), 'MarkerSize’ ,markersize(1l));

sxlabel('\times normalized frequency {\i\omega T}/{\i\pi}‘);
sylabel (*\times Transfer Function Difference Magnitude’);
labs = str2mat(‘'{\i n}= 24-, ...

‘{\i n}= 60',’{\i n)=120"','{\i n}=240’,'{\i n}=480");
labs = setstr({ones(size(labs,1),1)*'\times\10’ labs]);
[hax,hli,hte] = slegend([.4 .23],[h{1:5)], labs);
fn = [‘hinfid_ex2_6_tfmagsdiff’ num2str(output_number)];
if (~scrn), drawnow; printsto(‘-depsc’,[fn '.eps’])); stfixps({fn ‘.eps’']); end;
stitle{([*'\times Magnitude of Difference between Linear and Nonlinear’

* Identified Models (#' num2str(output_number) ‘)‘});

drawnow; if (scrn), pause; else, printsto{‘-dpsc’,[fn ‘.ps’']); stfixps{[fn '.ps’}l); end;

Appendix A: Computer Codes 139

8.2.5 tf2str.m — Convert Transfer Function to String

tf2str converts a transfer function, specified by numerator and denominator polynomial
coefficient row vectors, into a printable string.

function out = tf2str(num,den,s, fact,initstr)
% TF2STR Converts transfer function to printable string.

L4

TF2STR (NUM, DEN, S, FACT, INITSTR) converts a transfer function to a
printable string representation.

TF2STR(NUM,DEN) is the default. Other arguments are optional.

S is the character used for the variable, default ‘'s’.

in a factored representation {unless FACT=0 or 'n‘};
INITSTR is an initial string to be printed, such as ‘'X(s) = ‘.

%

%

L

%

%

%

%

% FACT will cause the numerator and denominator to be printed
%

%

£

%

% Note that NUM must be SISO (i.e., single row vector).

%
%

See also POLY2STR, POLY2TEXT.
% Copyright (c) 1993, Erik A. Johnson <johnsone@uxh.cso.uiuc.edu>, 11/22/93.

% check arguments
if nargin==5,
if ~isstr{initstr),
error { *INITSTR must be a string.’);
end;
else,
if nargin<5,
initstr = ‘‘;
end;
if nargin<4,
fact=0;
elseif (isstr(fact)),
if (fact=='n’),
fact = 0;
else,
fact = 1;
end;
else,
fact = (fact ~= 0});
end;
if nargin<3,
s = 's’';
end;
if nargin<2,
den=[1};
end;
if nargin<l,
error ('Got to have some arguments!’};
end;
end;

[nr,nc] = size(num);
if (nr>1 & nc>1),

error (‘NUM must be SISO (i.e., a single row vector).’);
end;

[dr,dc] = size(den);
if (dr*dc==1),
out = [initstr poly2text (num/den,s, fact)]:
else,
if (fact)
while (length(num)>1 & num(1)==0),
num = num(2:length{num));
end;
while (length{den)>1 & den(1}==0),

Appendix A: Computer Codes 140

tf2str.m — Convert Transfer Function to String (cont.)

den = den(2:length{den));
end;
if (den(1)~=0),
coef = num(l)/den(l);
if (num(1)-~=0),
num = num/num(l);

end;

den = den/den(1l);
else

coef = 1;
end;
if (coef == -1),

initstr = [initstr ‘- ‘];
elseif (coef ~= 1),
initstr = [initstr num2str(coef) * ‘'];
end;
end;
numstr = poly2text (num,s, fact);
denstr = poly2text(den,s, fact);
len = max(length(numstr),length(denstr))}+2;
numstr=[blanks (floor((len-length(numstr))/2)) numstr blanks(ceil{(len-length{numstr})/2))];
denstr=[blanks (floor({len-length(denstr))/2)) denstr blanks{ceil{(len-length(denstr})/2))]);
out = [blanks{length(initstr)) numstr; initstr strrep(blanks(len),’ *',’-');
blanks(length(initstr)) denstr];
end;

Appendix A: Computer Codes 141

8.2.6 poly2text .m — Convert Polynomial to String

poly2text converts a row vector of polynomial coefficients to a printable string represen-
tation.

function out = poly2text(p,s, fact)
% POLY2TEXT Printable string representation of a polynomial.

%

3 POLY2TEXT (P, S, FACT) converts a polynomial to a printable string

% representation. § is the character to be used
% for the variable (default is ‘s’). FACT (if

% given and (FACT~=0)&{(FACT~='n‘)) returns the

% polynomial in a factored representation.

%

% This function differs from POLY2STR in that it does the factorization
% and it doesn’t print leading blanks.

%

% See also POLY2STR in the Control System Toolbox.

% Copyright (c) 1993, Erik A. Johnson <johnsone@uxh.cso.uiuc.edu>, 11/22/93.

% check arguments
if nargin<3,
fact=0;
elseif (isstr(fact)),
if {(fact=='n’},

fact = 0;
else,
fact = 1;
end;
end;
else,
fact = (fact ~= 0);
end;
if nargin<2,
s = 's’;
end;

if nargin<i,
error (‘Got to have some arguments!’);
end;

% do the work

if (length(p)==1 | ~fact),
out = poly2str{p,s);
while (length({out})>1 & out(l)==' ‘),
out = out(2:length(out)};
end;
out = deblank(out);
else,

while (length(p)>1 & p(l)==0),
p = p{2:length(p));

end;

if (p(1) == -1},
out = ‘-‘;
P = -p;

elseif (p{l)~=1 & p(1l)~=0},
out = num2str{p(l));

p =p / pll);
else,
out = '’;
end;
rr = roots(p);
i=1;
while (i<=length(rr)),
if (imag(rr(i)) ~= 0),
rstr = poly2str(real(poly([rr{i) rr{(i+l)])),s);
i=1i+1;
else
rstr = poly2str ({1 -rr(i)),s);
end;

while (length{rstr)>1l & rstr(l)==' ‘),

Appendix A: Computer Codes 142

poly2text.m — Convert Polynomial to String (cont.)

rstr = rstr(2:length(rstr));

end;
rstr = deblank(rstr);
out = [out * (' rstr ')’];
i=1i+1;
end;
if (out(l)==’ ‘),
out = out(2:length{out});
end;
end;

Appendix A: Computer Codes 143

8.3 EIGENSYSTEM REALIZATION ALGORITHM CODES

8.3.1 era.m — Eigensystem Realization Algorithm

era is an implementation of the Eigensystem Realization Algorithm developed by J.-N.
Juang and colleagues.

function [A,B,C,poles,mshapes,wn,zn,MAC,nout] = era(Y,T,ni,n,rs,k)
% ERA 1Identification via the Eigensystem Realization Algorithm.

P

(A,B,C] = ERA{Y,T,NI,N,RS) uses the Eigensystem Realization Algorithm
(ERA) to identify the system with a given
pulse response. The input and output arguments are:

Y is the pulse response (each column is a pulse response;
the response of the i-th output to a pulse on the j-th
input is in column (i+(j-1)*no) of Y, where no is the
number of outputs)

T is the sampling period of the system (defaults to 1)
NI is the number of inputs (defaults to 1)

N is a vector of candidate system orders. Alternately,
candidate singular value cutoff tolerances (i.e., a
level below which singular values are considered zero)
can be passed in N. If all elements of N are positive
integers, the former is assumed, otherwise the latter.
A further possible value, N=‘prompt’ or N='ask’ will
plot the singular values and ask for a cut-off
tolerance or order (clicking in the graph window will
display the point at which the mouse is clicked).

%

%

3

%

3

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

% RS takes the form of [R S] and is the number of row blocks
% R and column blocks S should be used in forming the

% generalized Hankel matrices. They should generally

$ both be at least twice N. If not supplied, they are
% chosen to be floor({size(Y,1)-K-1)/2) to use as much of
% the pulse response Y as possible; this may often be far
% too big (causing a huge, but unnecessary, increase in
E 4 computation time). If RS is a column vector of the

% same length as N or is a scalar, then R and § are chosen
% to be RS*N (this requires N to be explicitly specified,
% and not ‘ask’).

%

%

£

1

%

%

%

%

%

%

%

%

%

%

%

%

%

%

£

%

%

%

%

A,B,C are the discrete-time state-space matrices of the
identified model. If N is a non-scalar vector, then
the models are given by A={Al;A2;...], B={Bl;B2;...);
Cc=[C1 C2 ...), where the Ai will be padded with extra
columns if the values of N are not all the same.

{a,B,C,POLES, MSHAPES,WN, ZN,MAC,N] = ERA(...) also returns the complex
discrete-time poles and

modeshapes, continuous-time natural frequencies (in rads/sec)
and damping ratios, the Modal Amplitude Coherence (MAC), and the
actual system orders, respectively. (The MAC is a measure of
whether a mode is “true” or noise- induced; it is always in [0,1],
with smaller values signifying noise-induced modes.) For non-
scalar N, the poles, natural frequencies, damping ratios, and
MACs for each candidate model are stacked like the input matrix B
above and the modeshapes are stacked like the state matrix A above.

NOTE: The algorithm to compute the values of MAC has not been
fully tested and may not give accurate MAC results.

= ERA(...,K) also gives the time offset used to compute the model.
Its default value is 1.

% Copyright (c)1996, Erik A. Johnson <johnsone@uiuc.edu>, 5/30/96

Appendix A: Computer Codes 144

era.m — Eigensystem Realization Algorithm (cont.)

% Some ideas for this code were taken from another implementation of ERA
% in MATLAB by Allen Prell, graduate student, Dept. of Aero & Astro Engrg.,
% U. of Illinois, December 1994.

The primary source for the ERA algorithm used here is:

for Modal pParameter Identification and Model Reduction.” Journal of

%
%
% J.-N. Juang and R.S. Pappa, 1985. "An Eigensystem Realization Algorithm
%
% Guidance, Control, and Dynamics, 8(5), Sept.-Oct. 1985, 620-627.

9

check # of arguments

if (nargin<l), error('ERA requires at least 1 input argument.’};
elseif (nargin>6), error('ERA takes at most 6 input arguments.’);
elseif (nargout>9), error(‘ERA produces at most 9 outputs.’);
end;

% handle callback
if isstr(y),
strformat = ‘N=%.0f, tol=%g’;
linetag = ‘pt line’;
txtltag = '‘pt text’;
txt2tag = ‘pt text2’;
1 = findobj(gcf, 'Tag’,6 linetag};
tl findobj (gcf, ‘Tag’, txtltag);
t2 findobj (gcf, 'Tag’, txt2tag);
ptfig = get(gcf, ‘CurrentPoint’);
posfig = get(gcf, 'Position’);
pt = get(gca, ‘CurrentPoint’});
pt = pt(l,1:2);
axlims = axis;
str = sprintf(strformat,pt):
if strcmp (Y, ‘Buttonbown’),
if (0), % text method
disp(str);
else,
delete{[l;t1l;t2]);
if all(pt>=axlims({1l 3)) & pt<=axlims([2 41])),
erasemode = ‘xor‘;
1 = line(pt(1),pt(2), ‘LineStyle’,'+’, ‘Color’,'w’,
‘EraseMode’, erasemode, 'Tag’, linetag) :
t = text([1:;1)*pt(1),[1;1]1*pt(2),stxr({1;1],:),
‘EraseMode’,erasemode, ‘Visible’, 'off’,
‘FontSize’, round(get(gca, ‘DefaultTextFontSize‘}*.83));
set(t(l), 'Tag’,txtltag);
set(t(2), 'Tag’,txt2taqg);
set (gcf, ‘WindowButtonUpFcn’, ‘era(' ‘ButtonUp’’'); ', ...
‘WindowButtonMotionFcn’, ‘era(® ‘MouseMoved’ '); ') ;
era(‘MouseMoved’};
end;
end;
elseif strcmp(Y, ‘MouseMoved’) & all(ptfig>=0&ptfig<=posfig(3:4}),
if all(pt>=axlims{[1 3]) & pt<=axlims((2 4]})),
if ~isempty(l), set(l, 'Xdata’,pt(l),‘Ydata’,pt(2)); end;
if ~isempty(t2},
set(t2,'String’,str, ‘Position’, [pt 0], 'HorizontalAlignment’,’'left’);
moveit = get(t2, 'FontSize');
set(t2, 'Units’, 'pixels’);
set(t2, 'Position’,get(t2, 'Position’)+[moveit 0]);
set(t2, 'Units’, '‘data’);
ext = get(t2, 'Extent’};
if (ext(l)+ext(3) >= axlims(2)),
set (t2, 'Position’, [pt 0], 'HorizontalAlignment’, ‘right’);
set(t2, 'Units’', '‘pixels’);
set(t2, 'Position’,get(t2, ‘Position’) - [moveit 01});
set (t2, 'Units’,‘data’);
end;
if ~isempty(tl),
set(tl, '‘Visible’,'off’, 'Position’,get(t2, 'Position’),
‘HorizontalAlignment’,get (t2, 'HorizontalAlignment’),
‘String’,str, ‘Visible’, ‘on’};

Appendix A: Computer Codes 145

era.m — Eigensystem Realization Algorithm (cont.)

end;
end;
end;
else,
delete(([1;tl1;t2));
set(gcf,'windowButtonUchn‘,'1;','windowButtonMotionFcn',");
if strcmp(Y, ‘ButtonUp’), disp(str); end;
end;
return;

end;

% handle unsupplied arguments

if (nargin<2), T=[]): end;
if (nargin<3), ni=(]; end;
if (nargin<4), n={]; end;
if (nargin<5), rs=[]; end;
if (nargin<é6), k=[(); end;

% determine some sizes
nk size(Y,1l);

no size(Y,2)/ni;

if (no~=round(no}),

error (‘ERA requires the # of columns of Y to
end;
% set default values
if isempty(T), T=1; else, T=T(1); end;
if isempty(ni), ni=1; else, ni=ni(l); end;
if isempty(n), n=‘ask’; end;
if isempty(rs), rs=(1 1]*floor((nk-k-1)/2); end;
if isempty(k), k=1; else, k=k(1l); end;
% check size of rs
if (size(rs,2)>2),
if (size(rs,1l)<=2},
rs=rs.’;
else,
error {‘ERA requires that RS have at most 2 columsn.’};
end;
end;

% determine how many candidates we have
if isstr(n), nn=0; else, n=n(:).’‘; nn=length(n});
rs=rs.’; nrs=size(rs,2};
if all({nn nrsl<=1),

nmodels 1;
elseif (all([(nn nrs]>1l) & nn~=nrs},

error {‘ERA requires that N and RS be empty, have one row,
else,

end;

nmodels = max({[nn nrsl);
end;
if {nn==1 & nmodels>1), n =n(:,ones(l,nmodels)); end;
if (nrs==1 & nmodels>1), rs=rs(:,ones(l,nmodels)); end;
if (size(rs,1)==1), if (nn>0)}, rs=n.*rs; end; rs=rs((1l:1],:);

nistol = ~isstr(n) & any(n~-=round(n)|n<.5};
% if n is known, preallocate the outputs
if ~(isstr(n) | nistol),

maxn max(n);

sumn = sum(n);

A zeros (sumn, maxn) ;

be a multiple of NI.’);

or have the same # of rows.’);

end;

if (nargout>=2), B=zeros(sumn,ni); end;
if (nargout>=3), C=zeros{no,sumn); end;
if (nargout>=4), poles=zeros(sumn,l); end;
if (nargout>=5), mshapes=zeros(sumn,1l1); end;
if (nargout>=8), MAC=zeros(sumn,l); end;
end;
nout=zeros (nmodels, 1) ;
% construct the huge Hankel matrix
Appendix A: Computer Codes 146

era.m — Eigensystem Realization Algorithm (cont.)

maxrs = [max(rs(l,:)) max(rs(2,:))+k]l+1;
H = zeros([no ni].*maxrs);
maxnk = max(sum(rs))+l+k;
if (nk<maxnk),
error { *‘ERA did not have enough times in Y for the requested [R S].’});
end;
Y2 = reshape(Y(1l:maxnk,:).’,no,ni*maxnk};
for j=l:maxrs(l),
Y2cols = (j-1)*ni+l:min(ni*maxnk, (maxrs(2}+j-1)*ni);
H({(j-1)*no+l:j*no,l:1length(Y2cols)) = Y2{(:,Y2cols);
end;

% loop over the candidate model orders
for j=1:nmodels,
% do the singular value decomposition
r = rs{l,3);:
s = rs(2,3);
[P,D,Q] = svd(H(1l:no*(r+1l),1l:ni*{(s+1)),0);
sv = diag(D);
% determine the truncation point
if isstr(n),
% graph and get the value in ncur
h=semilogy(sv(:,[1 1]1}); xlabel('N’); ylabel(‘'Singular Values‘});
axis(axis);
set(h{2), 'LineStyle’, ‘0’);
title([‘'Singular values for [R S] = ' mat2str(rs(:,3j}).’')1);
set (gcf, 'WindowButtonDownFcn', ‘era (' ‘ButtonDown’’); "', ...
‘WindowButtonUpFcn’, *1;'});

drawnow;
ncur = input (‘Enter order or cutoff tolerance: ‘)
set (gcf, ‘WindowButtonDownFcn', '’} ;

title(*’); drawnow;
if isempty(ncur), ncur=length(sv); end;
nistol = any{ncur~=round{ncur) |ncur<.5};
else,
ncur = n(j);
end;
if (nistol),
ncur = sum(sv>=ncur};
end;
% do the truncation
D_half = diag(sqrt(sv(l:ncur)));
D_invhalf = diag(sqrt(l./sv{(l:ncur)));
P{:,ncur+l:size(P,2)) = [);
Q{:,ncur+l:size(Q,2)) = {];
% compute the state-space system matrices

Ai = D_invhalf * P’ * H(l:no*(r+l),ni*k+1l:ni*(s+1l+k)) * Q * D_invhalf;
Bi = D_half * Q' * [eye(ni);zeros(s*ni,ni)]};
Ci = [eye(no) zeros(no,r*no)] * P * D_half;

% insert into outputs
oldn = sum(nout});
nout(j,1l) = ncur;
irows = oldn+1l:o0ldn+ncur;
A(irows,l:ncur) = Ai;
B(irows,1l:ni) = Bi;
C{l:no,irows) = Ci;
% compute poles and modeshapes
if (nargout>=4),
if (nargout<5),
polesi = eig(Ai);
else,
[mi,polesi]l = eig(Ai);
polesi = diag({polesi);
mshapes (irows,l:nout(j}) = mi;
end;
poles{irows,1l) = polesi;
end;
% compute modal amplitude coherence
if {(nargout>=8),
FTEEIELHADILLILBIIELLELLLLILRILLILLILLVLLLLILLILLLLLILLLLLBLILLILY

Appendix A: Computer Codes 147

era.m — Eigensystem Realization Algorithm (cont.)

% NOTE: This method of computing the modal amplitude coherence %
% (MAC) values has not been fully tested and its results %
% may or may not be accurate. E
THLLHLITLLLLLILLILILVLLBLLLLBLLLILLLBFLBILLILLITLLLTULLULLLHE%%
g = Q * D_invhalf * inv(mi)‘;

b = [eye(ni) zeros(ni,s*ni)] * g;
ii = (1l:ni).; ii=ii(:,ones(l,s+1)); di=ii(:);
jj = (0:8).’; 33j=3jj(:.ones(l,ncur)};
zz = polesi(:,ones{l,ni)}).’;
gbar = b(ii,:) .* conj(zz(ii,:).~jj(ii, :));
MACi = abs (sum{conj (gbar).*g)

./sgrt (abs (sum(conj (gbar) . *gbar)})

.*abs (sum({conj (g). *g 1))
MAC(irows,1l) = MACi.';
end;

end;

% compute (continuous-time) natural frequencies and damping
if (nargout>=6),
m=0; % will it always work with m=0, or do we have to play with it
s = (log{poles) + 2*m*pi*sqrt(-1))/(k*T};
wn = sqgrt(real(s.*conj(s))};
if (nargout>=7),
zn = -real(s)./sqrt{wn);
end;
end;

Appendix A: Computer Codes 148

8.3.2 era_test.m — Simple ERA Example

era_test runs an example using era to identify a simple system.

% era_test.m

% this script runs a simple identification example using the
% Eigensystem Realization Algorithm via the era.m m-file.

% construct a simple 4 degree of freedom system, with
% 2 inputs and 3 outputs (not collocated).

n=4; nrefs=2; no=3;
T = .6;

[a,b,c,d,M,C,K,PP,1,W,Z2] = ndof(n,T);
[a,b,c,d] = ssselect(a,b,c,d,size(b,2)+(1l-nrefs:0),1:no0};

% get the pulse response
nt = dtimvec(a,b,c,zeros(size(a,1),1),1le-3);
resp = zeros(nt,no*nrefs);
for k=1:nrefs,
resp(:, (k-1)*no+(1l:no)) = dimpulse(a,b,c,d, k,nt);
end;

% add a little noise
resp_noisy = resp + sqrt(mean(resp(:)."2))*randn(size(resp))/10;

% run ERA
[A,B,C,poles,mshapes,wn, zn,MAC,nout] = era(resp_noisy,T,nrefs, ...
‘ask’, [16;25;40;80)*([1 11):

% display natural frequencies and damping
disp('Exact natural frequencies and damping ratios’);
[junk,ii] = sort(wW):

disp([W(ii}) 2(ii)]);

disp(* '):
disp('Estimated natural frequencies and damping ratios’};
[junk,ii] = sort(wn);

disp(l{wn(ii) zn(ii)]};

Appendix A: Computer Codes 149

8.4 TWO-STAGE ADAPTIVE MONITORING CODES

8.4.1 rarx_ test.m — Evaluating a Two-Stage Adaptive Monitoring

rarx_test tests one example of a two-stage monitoring algorithm, using the “forgetting
factor” variant of the recursive least-squares identification with an ARX model of the system.

function [h,p,yh] = rarx_test(al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2,al3,alq,
al5,al6,al7,al8,al9,a20,a21,a22,a23,a24,a25,a26,
a27,a28,a29,a30,a31,a32,a33,a34,a35,a36,a37,a38,a39)
% RARX_TEST Uses RARX to identify various NDOF systems.

RARX_TEST simulates a (possibly time-varying) n-degree-of-freedom system
with sensor noise and uses RARX (Recursive ARX) to identify natural
frequencies and damping ratios.

The arguments are in variable/value pairs. For example, RARX TEST('n’,6)
sets the variable n (# of degrees of freedom) to 6. Look at the code for
explanations of the variables and their default values.

dP dP dP JP JP JP IP IP P OP

See also RARX_TEST_RUN, RARX.
% Copyright (c)19%6, Erik A. Johnson <johnsone@uiuc.edu>, 7/8/96

% variables and their default values

n=1; % # of degrees-of-freedom

ni = 1; % # of inputs

no = 1; % # of outputs; no>l won‘t work w/RARX -- MISO systems only
dt = 0.6; % time step

t0 = 0; % initial time

tf = 750; % length of simulation in seconds

dm = 0.0; % mass gradient

dec = 0.0; % damping gradient

dk = 0.0; % stiffness gradient

nu = 0; % number of sinusoids in input; use 0 for random

filt = 8; % order of output low-pass filter; use 0 for no filter
filtcut = 0.6; % filter cutoff freq = filtcut/(2*dt)

noisemag = 5e-2; % sensor noise (rms_noise/rms_signal)

outtype = ‘displacement’; % sensor type

ff = .97; % forgetting factor; should be in [.97,.999)
modalresponse = []; % should we output modal responses

% parse arguments
if rem{nargin,2),

error (*RARX_TEST requires ‘‘'variable’’/value pairs.’};
end;
for k=1l:nargin/2,

eval([eval([‘a’ num2str{(k*2-1)}) ‘= a’ num2str(k*2) ‘'‘;']};
end;

% number of time steps
nt = round(tf/dt);

% adjust filter parameter lengths
if isempty(filt), filt=8; end;
if isempty(filtcut), filtcut=.6; end;
if (length(filt)~=length(filtcut)),
if (length(filt)==1),
filt = filt*ones(size(filtcut));
elseif (length(filtcut)==1},
filtcut = filtcut*ones(size(filt));
else,
error (‘FILT and FILTCUT must be scalar or the same size.');
end;
end;

% set up time vector
t = t0 + (0:nt-1). *dt;

% set up inputs and outputs

Appendix A: Computer Codes 150

rarx_test.m — Evaluating a Two-Stage Adaptive Monitoring (cont.)

n-ni+l:n;
1l:no;

inputs
outputs

% set up force matrix u
if (nu>0),
um = randn(nu,ni);
uw = rand(nu,ni)*2;
u = zeros(nt,ni});
for kk=1l:nu,
u = u + um{kk*ones{nt,1),:).*sin(t*uw(kk,:));
end;
urms = sqgrt{sum(u.”2)/nu);
u=1u ./ urms({ones(nt,1),:);
else,
u = randn(nt,ni);
end;

% state initial conditions
x0 = zeros(2*n,1l);

% do the integration through time
if all(dm{:)==0)&all(dc(:)==0)&all(dk(:)==0),
% time-invariant problems
{a,b,c,d] = ndof(n,dt,outtype);
[a,b,c,d) = ssselect(a,b,c,d, inputs,outputs};
[y,x) = dlsim{a,b,c,d,u,x0);
xx = x(nt,:).";
r = eig(a);
r r(:,ones(l,nt));
else,
% set up mass, damping, and stiffness values
if isstr{dm), dm=eval (dm); end;
if (length(dm)==1),
dm=dm*rem(£floor (t/(tf/3)),2);
elseif (length(dm)~=length(t)},
error{‘DM must be scalar, a string, or the same length as the time vector.’);
end;
if isstr(dc), dc=eval(dc); end;
if (length(dc)==1},
dc=dc*rem{floor(t/(tf/3)},2);
elseif (length(dc)-~=length(t})},
error (‘DC must be scalar, a string, or the same length as the time vector.’);
end;
if isstr(dk), dk=eval(dk); end;
if (length(dk)==1),
dk=dk*rem(floor(t/(c£/3)),2);
elseif (length{dk}~=length(t)),
error (‘DK must be scalar, a string, or the same length as the time vector.’};
end;
mfract=ones(n,1l); cfract=ones(n,l); kfract=ones(n,l); ifr=ceil({n/2);
% check for piecewise time-invariants
ii = {1; find(diff(dm(:))|Qiff(dk(:})|Aiff(dc(:)))+1; nt);
if ~isempty(ii), if any(diff(ii)<10), ii=ones(1,1000); end; end;
if (length{ii)<=10},

y = zeros{nt,no);
x = zeros(nt,2¥*n);
r = zeros(2*n,nt);

x(1,:) = x0(:).";

for kkk=1:length(ii)-1,
3j = ii(kkk):ii(kkk+1);
333 = (ii(kkk)+ii(kkk+1))/2;
mfract (ifr)=1-dm(jjj); cfract(ifr)=1-dc(jjj); kfract(ifr)=1-dk(3jjj);
[{a,b,c,d]=ndof (n,dt,outtype, mfract,cfract, kfract);
[a,b,c,d] = ssselect{a,b,c,d, inputs, outputs);
[y(3j,).,x(33,:)) = dlsim(a,b,c,d,uljj,:),x{ii{kkk),:));
rr = eig{a);
r{:,33) = rr{:,ones(1,1ii(kkk+1)-1i(kkk)+1));

end;

else,
% initialize the data

Appendix A: Computer Codes 151

rarx_test.m — Evaluating a Two-Stage Adaptive Monitoring (cont.)

u=u.’;
xx = x0;
y = zeros{no,nt);
x = zeros(2*n,nt);
r = zeros{2*n,nt);
% do the integration
[a,b,c,d] = ndof(n,dt,outtype);
[a,b,c,d] = ssselect(a,b,c,d, inputs, outputs);
for k=1:nt,
y{:,k) = c*xx + d*u(:,k);
x(:,k) = xx;

mfract (ifr)=1-dm(k); cfract(ifr)=1-dc(k); kfract(ifr}=1-dk(k);
la,b,c,d} = ndof(n,dt,outtype,mfract,cfract, kfract);
la,b,c,d] = ssselect(a,b,c,d, inputs, outputs);

r{:,k) = eigl{a});

XX = a*xx + b*u(:,k);
end;
% transpose the outputs
u=u.’;
x = X.'
y=y.'

end;
end;

% convert to continuous time roots

r = log(r.’)/dt;

% compute exact fregency and damping
[r,w_exact,z_exact] = thm2rts(r, ‘sort’});

% set up the initial guess

[aa,bb,cc,dd] = ndof(n,dt,outtype);

[aa,bb,cc,dd] = ssselect{aa,bb,cc,dd, inputs,outputs);

[num,den] = ss2tf(aa,bb,cc,dd,1};

thm0 = [den{2:2*n+1) num(2:2*n+1) zeros(l,2*n*(ni-1))];

for nni=2:ni, num=ss2tf(aa,bb,cc,dd,nni); thm0((l:2*n)+nni*2*n)=num(2:2*n+1); end;

held=ishold;
co = get{gca, 'ColorOrder’};
. 0;

1;
noise = randn(size(y)).*{(ones(nt,1)*sgrt(sum(y.”2)/nt));
for nn=1:1length(noisemag),

% add some sensor noise

yn = y + noise*noisemag(nn);

un = u;

yn_unfilt = yn;
un_unfilt = un;
for nfilt=1:1length(filt),
% optionally pass the output through a low-pass filter
if (filt(nfilt)==0),
yn = yn_unfilt;
un = un_unfilt;

else,
[£iltNum, filtDen] = butter(filt{(nfilt),filtcut(nfilt));
for kk=1l:size{yn,2), yn(:,kk)=dlsim(filtNum, filtDen,yn_unfilt(:,kk)); end;
for kk=1l:size{un,2), un(:,kk)=dlsim(filtNum, filtDen,un_unfilt(:,kk)); end;
end;

% loop over various ff’'s

for nf=1:length(ff),
% do the identification
norders = [2*n 2*n*ones(l,ni) ones(l,ni)];
{thm,yhat]=rarx{[yn un],norders, '££, ff (nf), thm0);

% do the output
if ~isempty(modalresponse),
% get the modal responses

Appendix A: Computer Codes 152

rarx_test.m — Evaluating a Two-Stage Adaptive Monitoring (cont.)

end;
end;
end;
if (~held),

else

end;

nvar=zeros (no); %assume nvar(0) ~= mean nvar

nvar (:)=sum{(yn(:,ones(no,1)*(1l:no))-yhat(:, (1:no) '*ones(1l,no)})}.”"2)";
[hi,pl,yhl] = rarx_kf([yn un],norders, thm,dt,modalresponse,nvar,yhat);
h=[h hl];

p=I[p pl);

yh=[yh yhl];

% find the roots

[r,w,z] = thm2rts{thm,2*n,dt, ‘sort’);

% plot the data

hl=plot (t,w_exact,’:’,t,z_exact,':");

hold{‘on’);

h2=plot(t,w,t,z);

set ({hl;h2], 'Color’,co(l+rem({coi,size{co,1})),:));

coi = coi + 1;

drawnow;

h={h;hl;h2];

hold('off’); end;

Appendix A: Computer Codes 153

8.4.2 rarx_test_run.m— Evaluating Several Two-Stage Adaptive Monitoring Examples

rarx_test_run runs a number of tests of the two-stage adaptive monitoring using
rarx_test and plots the results. The effects of various parameters (e.g., the forgetting factor,
noise magnitude, etc.) on one, two, and six degree of freedom systems are examined.
% rarx_test_run

%
% This does a bunch of runs of rarx_test with different arguments

scrn = 0;

c3 = [.4 .7 .99];

cd = [.3 .53 .76 .99};
13 = (1 1 .5);

14 = {11 .5 .5];

if {(scrn), ggg=[0 1]; else, ggg={1l -1]: end;
ggg = [1 -11;% [0 1]; %$[1 -1} for printouts

FLEVILLLRIILRERSY
% %
% RARX stuff %
% %
TATLLBIBTILARRSE

t = (0:750).°;

plot(t,exp((750-t)*log({.95 .97 .98 .99 .9951)));

axis ([0 750 0 1]);

sxlabel(*\times time [secs]’); sylabel('\times weight');

fn = ‘00_f£f_on_rarx’;

drawnow; if (scrn), pause; else, printsto(‘-deps’,(fn ‘.eps’]); end;

title([‘'Forgetting factor causes past data to be weighted exponentially smaller (°
fn *)’], ‘FontName’, 'Times’);

drawnow; if (scrn), pause; else, printsto(‘-dps’,[fn ‘.ps’'l}; end;

THLILITEEILLHLY
% %
% SDOF SISO %
% %
TLLIILTILLELLY

% effect of £ff on time-invariant problem

clf(‘reset’);

h=rarx_test({‘n’,1,'dm’,0, ££7,[.95 .98 .99 .995]);

c=eval ([‘c’ num2str{length(h)/4))); l=eval([‘l’ num2str (length(h) /4)});

for k=1:length(c), set(h((1:4)+{(k-1)%4), 'Color’,[1 1 1]1*(ggg(l)+ggg(2)*cik)),
‘LineWidth’,1(k)}; end;

axis ([0 750 .97 1.04])

[hax,hli,hte] = slegend(‘mouse’,h(4:4:length(h))},

str2mat (‘\times\10{\italic\lambda) = 0.95’,
‘\times\10{\italic\lambda} = 0.98",
‘\times\10{\italic\lambda} = 0.99", ..
‘\times\10{\italic\lambda} = 0.995"));

sxlabel (*\times time [secs]’); sylabel({‘'\times frequency [\frac{rads}{sec}]');

fn = ‘01_ff_on_ti_siso_sdof_w’;
drawnow; pause; if (~scrn), printsto{‘'-depsc’,[fn '.eps’]}); stfixps([fn ‘.eps’]); end;
title{[‘Effect of forgetting factor on time-invariant SDOF SISO (' fn *) 1,
‘FontName', ‘Times’);
drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn ‘'.ps‘]); stfixps({fn '.ps’)); end;

axis{([0 750 .02 .1])

sylabel (*\times damping ratio’}:

fn = *01_ff on_ti_siso_sdof_z’;

drawnow; pause;if (~scrn), printsto(‘-dpsc’,[fn *.ps’]); stfixps([fn '.ps’])); end;

Appendix A: Computer Codes 154

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

title(**);
drawnow; if (scrn), pause; else, printsto(‘-depsc’,(fn ‘.eps'}); stfixps([fn '.eps’]); end;

% effect of noise on time-invariant

clf({‘reset’);

h=rarx_test(‘n’,1,’dm’',0,’£ff’,.98, ‘noisemag’, [.25 .1 .05 .01]);

c=eval([‘c’ num2str({length(h)/4)1); l=eval([‘l’ num2str(length(h)/4)1);

for k=1:length(c), set(h((1:4)+(k-1)*4),’Color’,[1 1 1]1*(ggg(l)+ggg(2)*c(k)),

‘LineWidth’,1(k)); end;

axis{([0 750 .97 1.14]);

[hax,hli,hte] = slegend{‘'‘mouse’, h(4:4:length(h})), ..
str2mat (*\times\10rms_{noise} = 0.25’,
‘\times\10rms_{noise) = 0.10’,
*\times\10rms_{noise} = 0.05', .
‘\times\10rms_{noise} = 0.01'));

sxlabel(‘\times time [secs]’); sylabel(‘\times frequency [(\frac(rads}{sec}]’);

fn = ‘02_noise_on_ti_siso_sdof_w';
drawnow; pause; if (~scrn), printsto('-depsc’,[fn ‘.eps’]}); stfixps([fn ‘.eps’]); end;
title([*Effect of sensor noise rms on time-invariant SDOF SISO (' fn ‘)’], ’FontName’, 'Times’);

drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps']l}); stfixps([{fn ‘.ps’]); end;

axis([0 750 .03 .2]);

sylabel (‘\times damping ratio’);

fn = *02_noise_on_ti_siso_sdof_z';

drawnow; pause; if (~scrn), printsto(‘-dpsc’,{fn ‘.ps’]); stfixps([fn ‘.ps’]); end;

title(')

drawnow; if (scrn), pause; else, printsto(‘-depsc’,[fn ‘'.eps’]); stfixps([(fn ‘.eps’}); end;

% effect of filtering on time-invariant
clf(‘reset’);
h=rarx_test('n’,1,'dm’,0,'£f£°,.99, '£filt’, [0 1 4 8]);
c=eval{[‘'c’ num2str(length(h)/4)]); l=eval(['l’ num2str(length(h)/4)1);
for k=1:length{c), set(h{((1:4)+(k-1)*4), 'Color’,[1 1 1)*(ggg(l)+ggg(2)*c(k)),
‘LineWidth’,1(k)); end;
axis ([0 750 .97 1.04])
[hax,hli,hte] = slegend{‘mouse’, h(4:4:length(h)),
str2mat(*\times\10no filter’,

‘\times\10filter order = 1°‘,
‘\times\10filter order = 4, ...
‘\times\10filter order = 8‘));
sxlabel ('\times time [secs]’); sylabel(‘\times frequency [\frac{rads}{sec}]’);
fn = ‘03_filt_on_ti_siso_sdof_w’;
drawnow; pause; if (~scrn), printsto(‘'-depsc’,[fn '.eps‘’)): stfixps({fn '.eps’l); end;
title(['Effect of filtering on time-invariant SDOF SISO (‘' fn ‘')’},’'FontName’, 'Times’);

drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn ‘.ps’]l): stfixps([fn ‘.ps’]); end;

axis ([0 750 .03 .1])

sylabel ('\times damping ratio’);

fn = '03_filt_on_ti_siso_sdof_z';

drawnow; pause; if (~scrn), printsto(‘-dpsc’,[fn '.ps’]); stfixps{([fn '.ps’]); end:;
title(*‘);

drawnow; if (scrn), pause; else, printsto('-depsc’,[fn ‘.eps’]}; stfixps([fn ‘.eps’]); end;

% effect of ff on piece-wise time-invariant (decrease mass)
clf('‘reset’);
h=rarx_test(*n’,1l,'dm’, ‘rem(floor(t/(t£/3)),2)/2,°£f£',[.95 .98 .99));

Appendix A: Computer Codes 155

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

c=eval ([‘c’ num2str(length(h)}/4}1); l=eval({'l’ num2str({length(h}/4)1);

for k=1l:length(c), set{(h({(1l:4)+(k-1)*4),’Color’,[1 1 1]*(ggg(l)+ggg(2)*c(k)),
‘LineWidth’,1(k)); end;

axis([(0 750 .9 1.5})

[hax,hli,hte) = slegend('mouse’,h(4:4:length(h}),

str2mat (‘\times\10{\italic\lambda} = 0.95',
‘\times\10{\italic\lambda} = 0.98", .
‘\times\10{\italic\lambda} = 0.99')});

sxlabel('\times time [secs]’); sylabel(‘\times frequency [\frac{rads}{sec}]’):

fn = ‘04_ff_on_ptimm_siso_sdof_w’;

drawnow; pause; if (~scrn), printsto(‘-depsc’,[fn '.eps’]l}: stfixps([fn ‘.eps‘}); end;

title([‘Effect of forgetting factor on piece-wise time-invariant SDOF SISO (° fn ')},
‘FontName’, 'Times’);

drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn ‘.ps’'l}; stfixps([fn *.ps’]); end;

axis ([0 750 .02 .12))

sylabel (‘\times damping ratio’);

fn = ‘04_ff_on_ptimm_siso_sdof_z’;

drawnow; pause; if (~scrn), printsto(‘~-dpsc’,{fn ‘.ps‘]); stfixps([fn ‘.ps’}); end;
title(*r);

drawnow; if (scrn). pause; else, printsto(‘-depsc’,[fn ‘.eps‘]); stfixps({fn *'.eps‘]}; end;

% effect of ff on piece-wise time-invariant (increase mass)

clf(‘reset’);

h=rarx_test(‘n’,1,'dm’, '-rem{floor(t/(tf/3)),2)/2*, ££’,(.95 .98 .99});

c=eval(['c’ num2str{length(h)/4)}]); l=eval{(['l’ num2str(length(h)/4)]);

for k=l:length(c), set{(h((1:4)+(k-1)*4),’'Color’,[1 1 11*{ggg(1)+ggg(2) *c(k}),

‘LineWidth’,1(k)}; end;

axis ([0 750 .75 1.1))

[hax,hli,hte] = slegend('mouse’, h(4:4:length(h)), .
str2mat { *\times\10{\italic\lambda}

= 0.95',
*‘\times\10{\italic\lambda} = 0.98°‘, .
‘\times\10{\italic\lambda} = 0.99°}};

sxlabel (‘\times time [secs]’'); sylabel('\times frequency [\frac{rads}{sec}]');

fn = '05_ff_on_ptimp_siso_sdof_w’;

drawnow; pause; if (~scrn), printsto('-depsc’,[fn ‘.eps‘]): stfixps((fn ‘.eps’]); end;

title(['Effect of forgetting factor on piece-wise time-invariant SDOF SISO (* fn)1,
‘FontName’, ‘Times’);

drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn '.ps’])): stfixps([fn ‘.ps’)); end;

% effect of ff on piece-wise time-invariant (decrease frequency)
clf(‘reset’);
h=rarx_test(‘n’,1,’dm’,0,'dk’, ‘'rem(floor (t/(tf/3)),2)/2’,'de’, ...
‘rem(floor (t/(tf/3})),2)*{1l-sqrt(.5)),££’,(.95 .98 .99]);
c=eval([{'c’ num2str(length(h)/4)]); l=eval(['1l’ num2str (length(h)/4)));
for k=1:length(c), set(h({1:4)+(k-1)*4),'Color’, (1 1 11*(ggg(1)+ggg(2) *c(k)),
‘LineWidth’,1(k)); end;
axis([0 750 .6 1.1]}
{hax,hli,hte] = slegend(‘'mouse’, h(4:4:length(h}),

str2mat {*\times\10{\italic\lambda} = 0.95’,
‘\times\10{\italic\lambda} = 0.98", .
‘\times\10{\italic\lambda} = 0.99)};
sxlabel (‘\times time [secs]’); sylabel(‘'\times frequency [\frac{rads){sec}] ‘)
fn = '06_ff_on_ptiwm_siso_sdof_w’;
drawnow; pause; if (~scrn)}, printsto(‘-depsc’,[fn ‘.eps’]); stfixps([fn ‘.eps’]); end;
title([‘Effect of forgetting factor on piece-wise time-invariant SDOF SISO (' fn ‘}’],
‘FontName’, ‘Times’);
drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn '.ps’]); stfixps([fn ‘.ps’']); end;

Appendix A: Computer Codes 156

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

axis([0 750 .01 .11})

sylabel (‘\times damping ratio’);

fn = '06_ff_on_ptiwm_siso_sdof_z*;

drawnow; pause; i1f (~scrn), printsto(‘-dpsc’,{fn ‘'.ps’]l); stfixps([fn '.ps’']); end;
title(');

drawnow; if (scrn), pause; else, printsto(‘'-depsc’,{fn '.eps’]); stfixps([fn '.eps’]); end;

% effect of £f on piece-wise time-invariant (increase frequency)

clf('‘reset’});

h=rarx_test('n’,1,’dm’,0,'dk’, ‘' ~-rem(floor(t/(tf/3)),2)','de’, ...

‘-rem(floor(t/(t£/3)),2)*{(sqrt(2)-1), ££’,{.95 .98 .99}):
c=eval([‘'c’ num2str(length(h}/4}1); l=eval([‘'l’ num2str(length(h)/4)]1);
for k=1:length(c), set(h({(1:4)+(k-1)*4),'Color’, (1 1 1)*{(ggg(l)+ggg(2)*c(k}),
‘LineWidth’,1{(k)}; end;

axis([0 750 .9 1.5))

(hax,hli,hte] = slegend(‘'‘mouse’,h{4:4:length(h)), ...
str2mat {‘\times\10{\italic\lambda}

= 0.95,
‘\times\10{\italic\lambda} = 0.98', .
‘\times\10{\italic\lambda} = 0.99));

sxlabel (*\times time [secs]‘); sylabel(‘'\times frequency [\frac{rads){sec}]’);

fn = ‘07_ff_on_ptiwp_siso_sdof_w';

drawnow; pause; if (~scrn), printsto(‘'-depsc’,[fn '.eps‘]); stfixps({fn ‘.eps’]l); end;

title([‘Effect of forgetting factor on piece-wise time-invariant SDOF SISO (* fn ‘')‘],
‘FontName’, 'Times');

drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn ‘.ps’])); stfixps([(fn ‘.ps’}); end;

axis([0 750 .02 .11))

sylabel{‘\times damping ratio’);

fn = ‘07_ff_on_ptiwp_siso_sdof_z’;

drawnow; pause; if (~scrn), printsto(‘-dpsc’,{fn '.ps’]); stfixps((fn '.ps‘]); end;
title(*);

drawnow; if (scrn), pause; else, printsto(‘'-depsc’,[fn '.eps’]); stfixps([(fn ‘.eps‘}); end;

$ effect of ff on piece-wise time-invariant (decrease damping)

clf(‘reset’);

h=rarx_test('n’,1,’dm’,0,’dc’, ‘rem(floor{t/{tf/3)),2)/2',££',[.95 .98 .99]);

c=eval([‘c’ num2str{length(h}/4)]); l=eval(['l’ num2str(length(h)/4)));

for k=1:length{c), set(h((1:4}+(k-1)*4}, Color’,[1 1 1]*(ggg{l)+ggg(2)*c(k)),
‘LineWidth’,1(k}); end;

axis([0 750 .92 1.08])

[hax,hli,hte] = slegend{‘'‘mouse’,h{4:4:1length(h)},

str2mat (*\times\10{\italic\lambda} = 0.95’,
‘\times\10{\italic\lambda} = 0.98’,
‘\times\10{\italic\lambda} = 0.99'));
sxlabel ('\times time [secs]’); sylabel(‘\times frequency {\frac{rads}{sec}l’);

fn = ‘08_ff_on_ptizm_siso_sdof_w’;

drawnow; pause; if (~scrn), printsto(‘'-depsc’,[fn ‘.eps’]); stfixps([fn ‘.eps’']); end;

title(['Effect of forgetting factor on piece-wise time-invariant SDOF SISO (* fn ')’],
‘FontName’, ‘Times’});

drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘'.ps’]); stfixps{[fn '.ps’]); end;

axis ([0 750 .00 .1})
sylabel (‘\times damping ratio’};

fn = *08_ff_on_ptizm_siso_sdof_z’;
drawnow; pause; if (~scrn), printsto(‘-dpsc’,(fn '.ps‘]); stfixps([fn '.ps’']); end;
title(*);

drawnow; if (scrn), pause; else, printsto(‘'-depsc’, (fn '.eps’]); stfixps((fn ‘.eps’])); end;

Appendix A: Computer Codes 157

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

% effect of ff on piece-wise time-invariant (increase damping)

clf(‘reset’);

h=rarx_test({'n’,1,’dm’,0,'dc’,’-rem(floor(t/(tf/3)),2)/2", ££,(.95 .98 .99));

c=eval(['c’ num2str{length(h)/4)]); l=eval{({['l’ num2str(length(h)/4)]):

for k=1:length(c), set(h({1:4)+(k-1)*4),'Color’,[1 1 1}*(ggg(l)+ggg(2)*c(k)},
‘LineWidth’,1(k)); end;

axis ([0 750 .92 1.081)

[hax,hli,hte] = slegend('mouse’,h{4:4:1length(h)),

str2mat {‘\times\10{\italic\lambda) = 0.95°,
‘\times\10{\italic\lambda} = 0.98°’, .
‘\times\10{\italic\lambda} = 0.99‘));

sxlabel{‘\times time [secs]’); sylabel(‘\times frequency [\frac({rads}(sec}l]’);

fn = ‘09_£ff on_ptizp_siso_sdof_w';

drawnow; pause; if (~scrn), printsto(‘'-depsc’,[fn ‘.eps‘]); stfixps([fn .eps’']); end;

title(['Effect of forgetting factor on piece-wise time-invariant SDOF SISO (* fn ')’1},
‘FontName’, ‘Times’);

drawnow; if {scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps’]); stfixps([fn ‘'.ps’]): end;

axis([0 750 .02 .13))

sylabel (‘\times damping ratio'});

fn = '09_ff_on_ptizp_siso_sdof_z';

drawnow; pause; if (~scrn), printsto(‘-dpsc’,[fn ‘.ps’]); stfixps([fn ‘.ps’]); end;
title(*’);

drawnow; if (scrn), pause; else, printsto(‘'-depsc’,(fn ‘.eps’]); stfixps([fn ‘.eps’']); end;

% effect of ff on continuously time-varying (mass varies)
clf(‘reset’);
h=rarx_test(‘'n’,1,'ff’,[.95 .98 .99],’tf",b 2250, ...

vdm’, '1-1./(1+{t>=(t£/3)) . *sin((t/(tf/3)-1)*pi) *(sqrt(2}-1))."2");
c=eval ([‘c’ num2str(length{(h)/4)}); l=eval([‘'l’ num2str(length(h)/4)])};
for k=1:length(c), set(h((1:4)+(k-1)*4),'Color’,[1 1 1]1*(ggg(l)+ggg(2)*c(k)),

‘LinewWidth’,1(k))}; end;

axis([{0 2250 .5 1.5])
[hax,hli,hte] = slegend{‘mouse’,h(4:4:1ength(h)), .
str2mat (‘\times\10{\italic\lambda}

= 0.95',
‘\times\10{\italic\lambda} = 0.98’, .
‘\times\10{\italic\lambda)} = 0.99'));

sxlabel ('\times time [secs]’); sylabel (‘\times frequency (\frac{rads}{secl}])’);

fn = *10_ff_on_tvm_siso_sdof_w’;

drawnow; pause; if (~scrn), printsto(‘-depsc’,[fn '.eps’']l); stfixps([(fn ‘.eps’]); end;

title([‘Effect of forgetting factor on continuously time-varying SDOF SISO (* fn ')},
‘FontName', 'Times’);

drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn ‘'.ps‘]); stfixps([fn '.ps’]); end;

axis([0 2250 .02 .12])
sylabel {‘\times damping ratio’):

fn = ‘10_ff_on_tvm_siso_sdof_z’;

drawnow; pause; if (~scrn), printsto(‘'-dpsc’,[fn *.ps’]); stfixps([fn ‘.ps’']); end;
title(*’);

drawnow; if (scrn), pause; else, printsto(‘-depsc’,[fn ‘.eps‘]); stfixps(ifn ‘.eps‘]); end;

% effect of £f on continuously time-varying (mass varies), accel output

Appendix A: Computer Codes 158

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

clf(‘reset’);

h=rarx_test(‘n’,1, £f£f’,[.95 .98 .99],tf",2250, 'outtype’, 'acceleration’, ...
‘dm’, ‘1-1./(1+(t>=(tf/3)).*sin({t/(tf/3)-1)*pi)*(sqrt(2)-1))."2");

c=eval({[‘'c’ num2str(length(h)/4)])); l=eval({'l‘ num2str(length{h)/4)]));

for k=1:1length({c), set(h((1l:4)+(k-1)*4), 'Color’,[1 1 1]1*{ggg(l)+ggg(2)*c(k)),

‘LinewWidth’,1(k)}); end;
axis ([0 2250 .9 1.5})
[hax,hli, hte] = slegend('mouse’,h(4:4:1length(h)),

str2mat{*\times\10{\italic\lambda} = 0.95',
*\times\10{\italic\lambda} = 0.98’', .
*\times\10{\italic\lambda} = 0.99"));

sxlabel (‘\times time [secs]’); sylabel{‘'\times frequency ([\frac{rads}{sec}]’);

fn = ‘11_ff_on_tvma_siso_sdof_w’;

drawnow; pause; if (~scrn), printsto(‘'-depsc’,[fn ‘.eps’])); stfixps({fn ‘.eps’)); end;
title(['‘Effect of ff on continuously time-varying SDOF SISO (‘' fn ‘')’], ‘FontName’, 'Times’);
drawnow; if (scrn), pause; else, printsto(‘'-dpsc’,[fn '.ps’]); stfixps({fn ‘.ps’]}; end;

axis ([0 2250 .02 .12})

sylabel (‘\times damping ratio’};

fn = *11_ff_on_tvma_siso_sdof_z’;

drawnow; pause; if (~scrn), printsto('-dpsc’,[fn ‘.ps’'}); stfixps({fn ‘'.ps’])l); end;
title(*'’};

drawnow; if (scrn), pause; else, printsto(‘-depsc’,[fn ‘.eps’]); stfixps([fn '.eps‘])): end;

% effect of f£f on continuously time-varying (damping varies)

clf(‘reset’);

h=rarx_test(‘n’,1, £f£f’,[.95 .98 .99}, tf’,b2250, ...

‘de’, ‘- (e>=(t£/3)) . *sin((t/(tf/3)-1)*pi)/2');
c=eval({‘c’ num2str{length(h)/4)]1); l=eval(['l’ num2str(length(h)/4}]);
for k=1:length{c), set{h((1l:4)+(k-1)*4), 'Color’,[1 1 1]1*(ggg(l)+ggg(2)*c(k)),
‘LineWidth’,1(k)); end;
axis ({0 2250 .95 1.05])
[hax,hli,hte] = slegend('mouse’, h(4:4:length(h)}, ...
str2mat (‘\times\10{\italic\lambda} 0.95°,

‘\times\10{\italic\lambda} 0.98, .
‘\times\10{\italic\lambda} = 0.99'));

sxlabel('\times time [secs]’); sylabel(‘'\times frequency [\frac{rads}{sec}]’);

fn = '12_ff_on_tvz_siso_sdof_w’;
drawnow; pause; if (~scrn), printsto(‘'-depsc’,[fn ‘.eps’]); stfixps((fn ‘'.eps’]); end;
title([‘Effect of forgetting factor on continucusly time-varying SDOF SISO (* fn ')'],

‘FontName’, 'Times’});
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,(fn ‘.ps’]l): stfixps([(fn '.ps’]); end;

axis ([0 2250 .00 .12)})
sylabel (*\times damping ratio’);

fn = ‘12_ff _on_tvz_siso_sdof_z’;

drawnow; pause; if (~scrn), printsto(‘-dpsc’,[fn ‘.ps’]l); stfixps([fn ‘.ps’]); end;
title(*);

drawnow; if (scrn), pause; else, printsto(‘-depsc’,(fn '.eps‘)); stfixps([fn ‘.eps’])); end;
R e e T T T 11

% %

% 2DOF MISO %

% %

FTERILILLHLHILRS

Appendix A: Computer Codes 159

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

% piecewise time-invariant problem (mass increases)

clf(‘reset’};

h=rarx_test('n’,2, 'noisemag’,5e-3, 'dm’, ‘rem{floor(t/(tf/3)),2)/2", ' ££',[.95 .98 .99]};
set{h, ‘Color’', {1 1 1]);

axis([0 750 .4 1.8))

sxlabel (*\times time [secs]’); sylabel{‘'\times frequency [\frac{rads}{sec}]’};

fn = '22_tv_miso_2dof_w’;

set(h([3:4 7:8)), ‘Visible’, ‘off’);

drawnow; pause; if (~scrn), printsto('-depsc’,[fn ‘.eps’]); stfixps([(fn '.eps’]); end;
title(['Piece-wise time-invariant 2DOF SISO (‘' fn *)’],‘FontName’, 'Times’);

drawnow; if (scrn), pause; else, printsto{‘-dpsc’,[fn ‘.ps‘]); stfixps([fn ‘'.ps’]}; end;

axis([0 750 0 .12])

sylabel (*\times damping ratio’):

set (h, 'Visible’, ‘on’);

set(h([{1:2 5:6]1),'Visible’, ‘off");

fn = '22_tv_miso_2dof_z"';

drawnow; pause; if (~scrn), printsto(‘'-dpsc’,(fn ‘.ps‘]); stfixps([fn ‘.ps’l); end;
title(‘’);

drawnow; if (scrn), pause; else, printsto(‘'-depsc’,[fn ‘.eps’']}; stfixps([(fn ‘.eps’])); end;

axis ([0 750 .02 .1})

fn = '22_tv_miso_2dof_z2"';

drawnow; pause; if (~scrn), printsto('-depsc’,{fn ‘.eps‘]); stfixps([fn ‘.eps’]l); end;
title([‘'Piece-wise time-invariant 2DOF SISO (' fn *}*],'FontName’, ‘Times’};

drawnow; if (scrn), pause; else, printsto{‘'-dpsc’,[fn *.ps’]); stfixps([fn ‘.ps’']); end;

FELLEHTTLHALEEY
% %
% 6DOF MISO %
% %
FTLILLBLLILBLULS

% time-invariant problem

clf(‘reset’);

h=rarx_test(‘'n’, 6, ‘noisemag’,3e-6,'ni’,6, dm’,0, ' ff’,.99});

co=get {gca, 'ColorOrder’); 1l=.5*(l+rem(l:length{(co),2}};

for k=1:length(h), set(h(k),’'Color’',co(l+rem(k-1,size{co,1)},:), LineWidth’, 1{k}}; end;
axis ({0 750 0 2.2])

set(h([(7:12 19:24]),'Visible’, 'off"):

sxlabel (‘\times time [secs])’); sylabel('\times frequency [\frac{rads}{sec}}’);

fn = '13_ti_miso_mdof_w';
drawnow; pause; if (~scrn), printsto('-depsc’, [fn ‘.eps’}); stfixps((fn ‘.eps’]); end;
title({['Effect of forgetting factor on time-invariant MDOF MISO (* fn *}‘],
‘FontName'’, 'Times’);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,(fn ‘'.ps’'l): stfixps([fn '.ps’]); end;

set (h, ‘Visible’, ‘on’);

set (h([{1:6 13:18]),'Visible’,'off’});
axis{[0 750 0 .11]);

sylabel{*\times damping ratio‘);

fn = *13_ti_miso_mdof_z‘;

drawnow; pause; if (~scrn), printsto(‘'-dpsc’,[fn “.ps’']}; stfixps([fn ‘.ps’]); end;
citle('’');

drawnow; if (scrn), pause; else, printsto(‘-depsc’,[fn ‘.eps’]); stfixps({fn ‘'.eps']}; end;

% piecewise time-invariant problem
clf (‘reset’};

Appendix A: Computer Codes 160

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

h=rarx_test('n’,6,'tf’,2250, ‘noisemag’,3e-6,'ni',6, ...
‘dm’, ‘rem(floor{t/(tf/3)),2)/2', ££f*,.99);
co=get (gca, ‘ColorOrder’); 1l=.5*(l+rem(l:length{co),2));
for k=1:length(h), set(h(k), ‘Color’,co{l+rem{k-1,size(co,1)),:), 'LineWidth’,1(k)); end;
axis ([0 2125 0 3])
set(h([7:12 19:24]), 'Visible’, 'off’);
sxlabel (‘\times time [secs]’); sylabel('\times frequency (\frac{rads}{(sec}]’);

fn = ‘22_pti_miso_mdof_w’;
drawnow; pause; if (~scrn), printsto('-depsc’,{fn ‘.eps’'])); stfixps([fn ‘.eps’]); end;
title([‘Effect of forgetting factor on time-invariant MDOF MISO (* fn '}’],
‘FontName’, ‘Times’);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn ‘.ps’]); stfixps((fn ‘.ps’]l); end;

set (h, ‘Visible’, ‘on’);

set(h(([(1:6 13:18)),'Visible’, 'off’};

axis([0 2125 0 .13});

sylabel (‘\times damping ratio’);

fn = ‘22 _pti_miso_mdof_z’;

drawnow; pause; if (~scrn}, printsto(‘-dpsc’,(fn '.ps‘l); stfixps({fn ‘.ps’]); end;
title('');

drawnow; if (scrn), pause; else, printsto(‘-depsc’,[fn '.eps’])); stfixps([fn ‘'.eps‘’]l); end;

% check modal responses

clf(‘reset’};

dt=.6; tf=2250; t=(0:round(tf/dt)-1).'*dt; n=6;

[x,p] = rarx_test{‘'n‘,n, 'tf’,2250,'dt’, .6, 'noisemag’,3e-6,‘'ni’,n,
‘modalresponse’, ‘ceil (t£/4dt/10), ...
‘dm‘, ‘rem(floor(t/(t£/3)),2)/2', ££,.99);

nt = size(x,1);

h=plot({(0:nt-1)*dt,x(:,1:2:2*n));

co=get {gca, 'ColorOrder’); l=.5*(l+rem(l:length(co),2)};

for k=1:length(h), set(h({k), ‘Color’,co(l+rem(k-1,size{co,1)),:), 'LineWidth’,1(k)); end;

set (gca, 'XLim’, [0 tf]));

sxlabel(‘\times time [secs]’); sylabel(‘'\times modal response’);

fn = ['23_’ num2str(n} ‘dof_modalresp’];
drawnow; pause; if (~scrn), printsto(‘'-depsc’,(fn ‘.eps‘}); stfixps([fn '.eps’]); end;
title(['Modal response of piecewise time-invariant ' num2str(n)
‘DOF MISO (* fn ‘)’},’FontName’, ‘Times’});
drawnow; if (scrn), pause; else, printsto{‘'-dpsc’,(fn ‘.ps‘]); stfixps{[fn ‘'.ps‘l); end;

% rms of modal responses

clf(‘reset’);

xXrms = sqrt(sum(x(:,1:2:2*n}.”2)/nt)";

h=semilogy(l:n,xrms, ‘w-’,1l:n,xrms, ‘w-');

set (gca, ‘XTick’, (1:n)’, ‘XLim’, [1 n]);

sxlabel (*\times mode number’); sylabel{‘\times modal response RMS');

fn = ['24_’ num2str(n) ‘dof_modalresp_rms‘];
drawnow; pause; if (~scrn), printsto(‘'-depsc’,[fn ‘.eps’]); stfixps([fn ‘.eps’])); end;
title(['RMS of modal responses of piecewise time-invariant ' num2str(n)
‘DOF MISO (' fn '}’),'FontName’, 'Times’);
drawnow; if (scrn), pause; else, printsto(‘-dpsc’,[fn '.ps’]); stfixps([fn *.ps’}]); end;

% continuously time-varying problem (mass)

% Note: On limited-memory platforms (e.g., PC or Mac), the following actually
4 must be done in segments since the call to RARX takes too much memory.
% See RARX_PIECEWISE for details on how that may be done.

clf(‘reset’);
h=rarx_test('n’,6, 'tf’, 2250, 'noisemag’,le-6,'ni’,6, ' ff’, .99,

Appendix A: Computer Codes 161

rarx_test_run.m — Evaluating Several Two-Stage Adaptive Monitoring Examples (cont.)

‘dm’,’1-1./(1+(t>=(tf/3)).'sin((t/(tf/3)—1)*pi)*(sqrt(Z)-l)).‘2’);
co=get (gca, ‘ColorOrder’};
for k=1:length(h), set (h(k), ‘Color’,co(l+rem(k-1,size(co,1)),:)); end;
axis ([0 750 0 2.2])
set{h([7:12 19:24]), 'Visible’, 'off’};
sxlabel('\times time [secs]’'); sylabel(‘'\times frequency {\frac{rads}(sec}]'):

fn = ‘'14_ti_miso_mdof_w’;
drawnow; pause; if (~scrn), printsto('-depsc’,(fn ‘.eps’]); stfixps([fn '.eps’]); end;
title([‘Effect of forgetting factor on time-varying MDOF MISO (° fn ‘)],

‘FontName’, ‘Times’) ;
drawnow; if (scrn), pause; else, printsto{‘'-dpsc’,[(fn '.ps'l}); stfixps({fn ‘.ps’])); end;

set (h, ‘Visible’, ‘on’};

set(h([1:6 13:18]),'Visible’, ‘off*);

axis{([0 750 0 .111);

sylabel (‘\times damping ratio’};

fn = *14_ti_miso_mdof_z’;

drawnow; pause; if (~scrn}, printsto(‘-dpsc’,{fn ‘.ps’]); stfixps([fn ‘.ps’]); end;
title(*’);

drawnow; if (scrn), pause; else, printsto(‘'-depsc’,(fn ‘'.eps’]); stfixps((fn ‘.eps’]}); end;

Appendix A: Computer Codes 162

8.4.3 thm2rts.m — Convert rarx Identified Model to Modal Characteristics

thm2rts converts the identification model output by rarx to natural frequencies and
damping ratios.

function [r,w,z] = thm2rts(thm,n,dt,dosort)
% THM2RTS compute roots (& freq./damping) from recursive SysID THM matrix.

{R,W,2) = THM2RTS(THM,N,T) returns the continuous-time roots R,
and modal frequencies (W) and damping ratios (2), for
the THM matrix returned by the recursive system
identification functions, where N is the order of the
system (= # of resulting roots = # of cols of THM used).

If THM is M-by-(N+K), then R is M-by-N, and W and Z are
M-by-ceil (N/2), where pairs of overdamped roots show up as
NaN’s in W and 2.

T is the sampling period.

[R,W,2] = THM2RTS(R) uses the given continuous-time roots to compute
modal frequencies and damping ratios.

[R,W,Z] = THM2RTS{(...,’sort’) will sort R, W, and Z by frequency at
each time step.

dP dP dP OP JP OP OP JP OP dP P JP P dP OP P OF P OF OP

See also RARX, RARMAX, etc.

% Copyright (c)1996, Erik A. Johnson <johnsone@uiuc.edu>, 6/3/96
% added sorting, 6/8/96

% check args
if (nargin<l), error('THM2RTS requires at least 1 input argument.’}; end;
if (nargin>4), error(‘THM2RTS takes at most 4 input arguments.’}; end;

% do the work
if (nargin <= 2),
% we have the roots

r = thm;
if (nargin==2), dosort=n; else, dosort={[]; end;
[m,n)] = size(r);
rr = r.’;
else,

% find the roots
m = size(thm,1);
r = zeros(n,m);
for k=1:m,
r(:,k) = roots([1l thm(k,1:n)]);
end;

% convert to continuous time
r = log{r)/dt;

rr = r;
r=r.';
if (nargin==3), dosort=[); end;
end;

% sort roots into complex pairs and real values
if (any({imag(xrr(:))==0)),

{junk,ii) = sort(-abs(imag(rr)));

ii = ii + n*ones(n,1)*(0:m-1);

rr(:) = rr(ii(:})};

rr(imag(rr)==0) = rr(imag(rr)==0) * NaN;
end;
rr = rr.’;

% compute fequency and damping

if (rem(n,2)), rr=[(rr NaN*ones{(m,1)]); n=n+l; end;
w = real{sqrt{rr(:,1:2:n).*rr(:,2:2:n))};

z = ~real(rr(:,1:2:n)+rr{:,2:2:n})/2./w;

Appendix A: Computer Codes 163

thm2rts.m — Convert rarx Identified Model to Modal Characteristics (cont.)

% sort them
if isempty(dosort), dosort=0; end;
if ((isstr(dosort) |any(dosort)) & (n>2}),

[w,ii]) = sort(w.’};

z=2.';

ii = ii + n/2*ones(n/2,1)*(0:m-1);
z(:) = z(ii);

w=Ww.";

z = 2.

end;

Appendix A: Computer Codes 164

8.4.4 ss2modal .m — Convert General State-Space System to Modal State-Space

This function converts a general state-space system to a modal state-space system whose
states are modal displacement and velocities for continuous- or discrete-time systems.

function [a,b,c,tm,pl=ss2modal(a,b,c,t,dosort)
% SS2MODAL Convert general state-space system to modal state-space.

[Am, Bm,Cm) = SS2MODAL(A,B,C) converts the given general, continuous-time,
state-space system to modal state coordinates.

{Am, Bm,Cm,Tm] = SS2MODAL(A,B,C) also returns the similarity transformation
matrix Tm used in the conversion
(if the o0ld states are X and the new
modal states are Q, then X=Tm*Q,
Am=inv{Tm) *A*Tm, Bm=inv(Tm)*B, C=C*Tm).

[Am, Bm, Cm, Tm, P] = SS2MODAL(A,B,C) also returns the number of underdamped
eigenvalue pairs in P.

SS2MODAL(A,B,C,T) performs the same operations for a discrete-time system
with sample time T. An empty T implies continuous-time.

SS2MODAL(A,B,C,T, ‘sort’) rearranges the states such that the underdamped
modes (those with complex eigenvalue pairs) are
grouped first by increasing frequency, then the
over-damped modes.

Note that the output of SSZMODAL uses the modal coordinates and their
derivatives as the states, whereas the CANON(...,'modal’) uses some
transformation of the states of SS2MODAL.

dP P dP dP OP dP IO dP JP P dP dP P JP JP dP OP JP dP P dF dP IP dP dP P

See also CDF2RDF, CANON.
$ Copyright (c)1996, Erik A. Johnson <johnsone®@uiuc.edu>, 4/10/96

% handle the inputs and outputs
if (nargin<l), error('SS2MODAL requires at least 1 argument, the A matrix.’);
elseif (nargin>5), error(‘'SS2MODAL takes at most 5 arguments.’);
elseif (nargout>5), error(‘'SS2MODAL returns at most 5 outputs.’);
elseif ((nargin<3)&(nargout>nargin}),
error ('SS2MODAL cannot convert matrices not supplied.’);
elseif (nargin==1), error(abcdchk(a)):;
elseif (nargin==2), error(abcdchk(a,b));
else, error(abcdchk{a,b,c)}):
end;

% handle default values
if (nargin<4), t=[); end;
if (nargin<5),dosort=[];end; if(isempty(dosort)),dosort=0;end;

% solve eigensystem
[Phi,D]=eig(a};
D=diag(D);
n=length(D);

% handle complex eigenvalues (eig() leaves them in pairs next to each other)
complexlist=(imag(D)~=0};

ii=find(rem(cumsum(complexlist).* (complexlist),2)==1);

p = length{ii);

% convert discrete-time eigenvalues to corresponding continuous time
if (~isempty(t)),

Dmask = (D==0);

D(Dmask) = D(Dmask) - inf;

D(~Dmask) = log(D(~Dmask))/t;
end;

% compute the similarity transformation matrix
if (p>0),
z00=ones(n, 1) ; z00 (ii)=-D(ii+1);

Appendix A: Computer Codes 165

ss2modal.m — Convert General State-Space System to Modal State-Space (cont.)

zml=zeros(n-1,1); zml(ii)=-D(ii);
zpl=zeros(n-1,1); zpl(ii)=ones(length(ii), 1);

Z = diag(z00) + diag(zml,-1) + diag(zpl,l);
else, % no transformation
Z = eye(n);

end;

% combine with eigenmatrix
tm=real (Phi*Z);

rcond (tm) ;

invtm=inv(tm) ;

% sort by increasing frequency
if (dosort & p>0),
[junk,jjl=sort{real (D{ii).*D(ii+1)));
§3=04i(33) ii(3jr+11.’; 33i=[3j(:);find(~complexlist)];
tm = tm(:,33);
invtm = invtm(3ij,:);
end;

% compute them

a=invtm*a*tm;

if (nargout>1),
b=invtm*b;
if (nargout>2),

c=c*tm;

end;

end;

Appendix A: Computer Codes 166

8.4.5 rarx_kf .m-— On-line Monitoring via a Kalman Filter

rarx_kf uses the results of an rarx identification and the input/output data to compute

modal displacements and velocities. An entire time history is computed here at once, but that is
merely for convenience; in a real-world system, this would run on-line in parallel with the identi-

fication routine.

function [xhat,p,yhat] = rarx_kf(z,nn,thm,T, howoften,nvar,yhat,xhat0,phat0)
% RARX_KF Compute modal responses from RARX model using Kalman filter.

[XM, P, YHAT2]) = RARX_KF([Y U],NN, THM, T, HOWOFTEN, NVAR, YHAT, XHATO, PHATO)

uses a Kalman filter toestimate modal responses of the system
with inputs U, output Y, and RARX-estimated system matrices THM.
Note that like RARX, this only handles single-output systems;
thus Y is a column vector,

NN is the same matrix passed to RARX that specifies the orders
and delay [na nb nk] of the ARX model. (Since this is single-
output, NN must be a row vector.)

T is the sampling time.

HOWOFTEN (optional) is a scalar integer that specifies the
number of time steps between updating the (A,B,C,D) model of the
system, used by the Kalman filter, from the THM argument. If
empty or not supplied, its value is one (i.e., update every time
step) .

NVAR (optional) is the noise variance. It is assumed to be unity
if empty or not supplied. A constant variance may be specified
with a scalar NVAR.

YHAT (optional) is an estimate of the system output, generally
that returned by RARX. If YHAT is empty or not supplied, then Y
is used instead.

XHATO {optional) and PHATO (optional) are the initial state and
state covariances, respectively. If empty or not supplied, they
default to zero.

The inputs Y, U, THM, (if supplied) NVAR, and (if supplied) YHAT
should all have the same number of rows, and YHAT (if supplied)
should be the same size as Y.

The output XM will have the same number of rows as Y and one
column per state. The first 2*P columns are true modes (complex
eigenvalues) (displacement first, then velocity), sorted by
increasing frequency.

The output YHAT2 is the same size as Y and is the estimate of
the system output with no noise.

A0 P OP I P P dP P dP P P dP I IP I IP P I JP IP OP P IP P P dP IP JP P JP dP P dP IP JP IO J0 I JP dO IO 0P OP I P

See also RARX, ARX, RARX_TEST.
% Copyright {(c)1996, Erik A. Johnson <jochnsone@uiuc.edu>, 7/8/96

% check # of arguments

if (nargin<3), error('RARX_KF requires at least 3 input arguments.');
elseif (nargin>9), error(‘RARX_KF takes at most 9 input arguments.’);
elseif (nargout>4), error(‘RARX_KF produces at most 4 outputs.’);
end;

% check argument sizes

no = 1;
[nt,ni] = size(z);
ni = ni-no;

[nl,nthm] = size(thm);
if (nargin<4), T=[]; end;
if (isempty(T)), T=1; else, T=abs(T(:)); end;

Appendix A: Computer Codes 167

rarx_kf.m — On-line Monitoring via a Kalman Filter (cont.)

if (nargin<5), howoften=(]; end;
if (isempty(howoften)), howoften=1; else, howoften=max(1l,round(howoften(1l)}); end;
if (nargin<6), nvar=(); end;
if (isempty(nvar)), nvar=1l; end;
if (all(size(nvar)>1)),
error (‘RARX_KF requires that NVAR be a column vector or scalar.’);
end;
if (length(nvar)==1), nvar=nvar*ones(nt,l); else, nvar=nvar(:); end;
if (nargin<7), yhat={(); end;
if (isempty{yhat)),
n2 = nt;
else,
[n2,nyhat] = size(yhat);
if (no~=nyhat),
error ('"RARX_KF requires that YHAT be empty or the same size as Y.');
end;
end;
if any(nt~={nl1 n2 length(nvar}]),
error (‘RARX_KF requires that [Y U]}, THM, and YHAT have the same number of rows.'};
end;
if (nargin<8), xhatO=[]); end;
if (nargin<9), phatO=[); end;

% check order sizes
if (size(nn,l)~=no),

error { ‘RARX_KF requires that NN have the same # of rows as Y has columns. ’);
end;
if (size(nn,2)-no~=2*ni),

error (‘RARX_KF requires that NN have 2*(#cols of u)+(#cols of y) columns.’);
end;

% preparation to get models
na=nn(l); nb=nn{2:1+ni); nk=nn(2+ni:1+2*ni);
if any(nk<0),
error ('‘RARX_KF cannot deal with non-causal systems (i.e., nk<0)}.');
end;
n = max{na,max(nb+nk)-1);
haved = nb>0 & nk==0;
nbi = nb - haved;

bk = (l:max(nbi))‘;

bk = bk(:,ones(1,ni)};

bj = n*(0:ni-1) + nk + (nk==0) - 1;
bj = bk + bj(ones(max(nbi),1l),:);

nbii = nbi{ones(max{(nbi),1l),:};
bi = bj(bk(:)<=nbii(:));

Dj = {[zeros(l,min(ni,1)) cumsum(nb(l:length(nb)-1))] + na;
Bj = Dj + haved;

Bj = bk + Bj(ones(max(nbi),1l},:};

Bi = Bj(bk(:)<=nbii(:})};

di = find(haved);

Di = Dj(haved) + 1;

% get the first system model in observer canonical form

k = 1;

a = diag(ones(n-1,1),1);

a(l:na,l) = -thm(k,1l:na).’;

b = zeros(n,ni);
if all(size(bi)), b(bi)=thm(k,Bi)}; end;
c [1 zeros{(l,n-1)]);
d zeros{1l,ni);
if all(size(di)),
d{di)=thm(k,Di);
b=Db+ a(:,1)*d;
end;
$%%%%[a,b,c,d] = minreal(a,b,c,d):
{a,b,c,tm,pl)=ss2modal{a,b,c,T, ‘dosort’);

Appendix A: Computer Codes 168

rarx_kf.m — On-line Monitoring via a Kalman Filter (cont.)

% create some space
if (~isempty(yhat)), y=yhat(:); else, y=z(:,1l:no); end;
u=z(:,no+{l:ni));

yhat = zeros(nt,no);
xhat = zeros(nt,n);

P = zeros(nt,1l);

p(l) = pl;

% handle initial conditions
if (~isempty(xhat0)),
if (prod(size(xhat0))~=n),
error (‘RARX_KF requires that XHATO be a column vector of length NN({(1).'});
end;
xhat(1,:) = xhatO(:).’;
end;
if (~isempty(phat0)},
if (any(size(phatO)~=n)),
error ('"RARX_KF requires that XHATO be a NN(1)-by-NN(1l) matrix.’);

end;

phat = phat0;
else,

phat = zeros(n);

end;

% loop over the times
for k=2:nt,
xbar = a*xhat(k-1,:).’ + b*u(k-1,:).";
pbar = a*phat*a.’;
if (rem(k-1,howoften)==0},
% update the KF model
a = diag(ones(n-1,1),1);
a(l:na,1l) = -thm(k,1:na).’;
b = zeros(n,ni);
if all(size(bi)), b(bi)=thm(k,Bi); end;
c [1 zeros(l,n-1)};
d zeros(l,ni);
if all(size(di)),
d(di)=thm(k,Di);
b=Db+ af(:,1)*d;
end;
%%%%%[a,b,c,d) = minreal(a,b,c,d);
[a,b,c,tm,pl]l=ss2modal(a,b,c,T, ‘dosort’);
end;
g = pbar*c.’/(c*pbar*c.’+nvar(k));
phat = (eye(n)-g*c)*pbar;

xhat (k,:) = ((eye(n)-g*c)*xbar-g*d*u{k,:). +g*y(k,:).").";
vhat(k,:) = (c*xhat(k,:).'+d*ulk,:).");
p(k) = pl;

end;

Appendix A: Computer Codes 169

8.4.6 rarx piecewise.m — RARX Identification in Segments

rarx_piecewise calls rarx to do identification of a segment its data. This is useful for
doing simulation of systems over a longer time period on limited memory platforms. Where
memory use is not an issue, or the time sequence is short, use rarx instead.

function (thm,yhat,P,Phi] = rarx_piecewise(tmax,z,nn, adm,adg, thm0,P0,PhiQ)
% RARX_PIECEWISE Do RARX identification in segments.

RARX_PIECEWISE (TMAX,Z,NN,ADM,ADG,...) does the same thing as RARX
except in segments over time.
This is convenient for platforms (e.g. PC or Mac) where
memory is limited. TMAX is the amount of time (in seconds)
between updates of the “waitbar” put on the screen while
it is running.

The outputs and the remaining inputs are identical to
those of RARX.

9P 9P P O IP dP dIP dP dP dP OP OP

See also RARX.
% Copyright {c)1996, Erik A. Johnson <johnsone@uiuc.edu>, 7/8/96

% check # of arguments.
if (nargin<5), error{‘'RARX_PIECEWISE requires at least 5 input arguments.’}; end;
if isempty(tmax), tmax=10; end;

% check sizes and handle degenerate case
nt = size(z,1l);
if (nt==0), thm=[); vhat=[]; P=[); Phi=[]; return; end;

% do the first segments
h = waitbar (0, ‘Please wait...'};
tO0=cputime;

if (nargin==5), [thml,yhatl,P,Phi]
elseif (nargin==6), [thml,yhatl,P,Phi]
elseif (nargin==7), [(thml,yhatl,P,Phi]
elseif (nargin>=8), [thml,yhatl,P,Phil
end;
tl=cputime; waitbar(l/nt);

rarx(z(1l,:),nn,adm,adqg);
rarx(z(1l,:),nn,adm,adg, thm0);
rarx(z(1l,:),nn,adm,adg, thm0,P0O);
rarx(z (1, :),nn,adm, adg, thm0,P0,Phi0);

% allocate some memory for the remaining segments
thm =zeros(nt,length(thml)); thm(l, :)=thml;
vhat =zeros(nt,length(yhatl)); vyhat(l,:)=yhatl;

% loop over remaining segments

num = 1;
mag = 2;
did = 1;

while (did < nt),
% adaptively adjust the length of the segments to approximate tmax
if (mag>l),
if (tl-tO<tmax),
num = num * mag;
else,
num
mag
end;
end;
% do the next segment
num = min(nt-did,num);
tO0=cputime;
[thml,yhatl,P,Phi] = rarx({z (did+ (1:num), :),nn, adm, adg, thml (size(thml,1),:),P,Phi);
tl=cputime;
% store the results in our outputs
thm(did+ (1:num), :)=thml; yhat(did+{(1l:num),:)=yhatl;
did = did + num;
waitbar (did/nt);
end;
waitbar(1); close(h);

max (1, floor (num*tmax/ (t1-tO+eps))};
1;

Appendix A: Computer Codes 170

9.0 APPENDIX B: ABSTRACTS RELATED TO H_.-BASED IDENTIFICATION

A table of many of the papers related to H_-based system identification is given below, along
with source and abstract for each paper. The Notes column contains a code, reflecting the applica-
bility of the paper to the work in this study, and sometimes a brief note on the contents or useful-
ness of the given paper. The applicability code is a number (in [0,10]; 10 denotes greatest
applicability) and a letter (A and a mean high applicability, and D or (d) little or no applicability;
uppercase denotes that the paper comes from one of the principle authors in H,.-based system

identification: Gu, Khargonekar, Helmicki, Jacobson, Nett, Partington, or Mikil&).

Authors | Title I Source Abstract Notes

1 | V.M. Adamjan, D.Z. Arov, and M.G. Krein, | This article is a study of infinite Hankel matrices and approximation problems|9a
1971. “Analytic Properties of Schmidt connected with them.

Pairs for a Hankel Operator and the Gener-
alized Schur-Takagi Problem.” Mathemat-
ics of the USSR — Sbornik, 15(1), Sept.
1971, 31-73 (Russian original Tom
86(128)).

2 (H. Akgay, G. Gu, and P.P. Khargonekar, In this paper, the problem of “system identification in H,,” is investigated in the|7B
1992. “Identification in H,, with Nonuni- |case when the given frequency response data is not necessarily on a uniformly | non-uni-
formly Spaced Frequency Response Mea- |spaced grid of frequencies. A large class of robustly convergent identification | formly-
surements.” 1992 American Control algorithms are derived. spaced fre-
Conference, Chicago, llinois, June 24-26, quencies
1992. Proceedings (American Automatic
Control Council, Evanston, Illinois), 246-

250.

3 |H. Akgay, G. Gu, and P.P. Khargonekar, In this note, the problem of system identification in H,, for the continuous-time|7B
1993. “A Class of Algorithms for Identifi- |case is investigated. It is shown that the class of systems with a lower bound on|continuous
cation in H,,: Continuous-Time Case.” the relative stability, an upper bound on the steady state gain, and an upper bound |time
IEEE Transactions on Automatic Control, |on the roll-off rate is admissible. This allows one to develop a class of robustly
38(2), Feb. 1993, 289-294. convergent nonlinear algorithms. The algorithms in this class have a two-stage

structure, and are characterized by the use of window functions. Explicit worst-
case error bounds in H,, norm between the identified mode! and the unknown sys-
tern are given for a particular algorithm. Finally, an example is provided to illus-
trate the application of the results obtained.

4 |T.C.P.M. |Identifica- IEEE Trans- | A procedure for the identification of industrial processes with the intention of con-{0d
Backx tion forthe |actionson |trol system design is proposed, discussed, and illustrated by an application to a
and A. A. H. |Control of |Automatic full-scale production process. The various identification steps are motivated,

Damen MIMO Control, keeping industrial applicability of the procedure in mind. The MIMO model set
Industrial 37(7), July |used is the common denominator form or minimum polynomial form. Parameter
Processes. 1992,980- |estimation is performed in several steps, thus adapting to estimation and control
986. requirements. As an indicative example of practical results obtained, the identifi-
cation and control of a quartz tube glass process is described.

5 [A. Bahri and A J. Helmicki, 1995. “H_, In this paper the interaction between H_, identification and H, robust control|3C
Identification-Based Robust Control Sys- | design problems is studied. An iterative solution for the coupled H,, identification
tem Design”’ 1995 American Control Con- |and control problems is proposed, which involves pre-filtering the plant data.
| ference, Seattle, Washington, June 21-23, | Some conditions on the pre-filter to permit convergence are derived. The use of
1995. Proceedings (American Automatic | pre-filtering is shown to significantly reduce the number of experiments required
Control Council, Evanston, lllinois), 3556- |at successive iterations.

3561.

6 |E.-W. Bai and M.S. Andersland, 1994. Stochastic and worst case approaches to system identification are different and are |6b
“Stochastic and Worst Case System Identi- |usually treated separately. In this communique we investigate the effect that a pro- jrelation
fication Are Not Necessarily Incompatible.” |jection operator has on the worst case behavior of estimates derived by stochastic|between
Automatica, 30(9), Sept. 1994, 1491-1493. |identification algorithms. We show that under certain assumptions the projections | stochastic

of the stochastic estimates are convergent in the worst case setting. We illustrate |and worst-
this result by applying it to least squares and maximum likelihood algorithms. case ID

7 |E.-W. Bai and S. Raman, 1994. “Robust |In this paper we consider the problem of robust system identification with noisy|8a
System Identification with Noisy Experi- |time or frequency response measurement data. It is shown here that any linear| modifica-
mental Data: Projection Operator and Lin- |identification algorithm which is convergent in the noise free case can be made|tion to lin-
ear Algorithms.” Automatica, 30(7), July |robustly convergent in the presence of noise by incorporating a simple projection | ear
1994, 1203-1206. operator into the algorithm. The computation simplicity and faster rate of conver- | algorithms

gence distinguish this approach from other existing robustly convergent nonlinear | to force

identification techniques. robust
noise con-
vergence
(uses a pri-
ori info)

Appendix B: Abstracts Related to Heo-based Identification

171

Hlinois), 251-
257.

strongly) optimal to within a factor of two. Finally, new upper and lower bounds
on the optimal identification error for this problem are derived and used to esti-
mate the identification error associated with the algorithm presented here. Inter-
estingly, the development of each of the results described above draws heavily
upon the classical Nevanlinna-Pick optimal interpolation theory. As such, the
results of this paper establish a clear link between the areas of system identifica-
tion and optimal interpolation theory.

| Authors Title Source Abstract Notes
8 |D. S. Bayard, | A Criterion }/EEE Trans- |A criterion for system identification is developed which is consistent with the|0d
Y. Yam, and | for Joint actions on |intended use of the fitted model for modem robust control synthesis. Specifically, |integrated
E. Mettler |Optimiza- Automatic |a joint optimization problem is posed which simultaneously determines the plant | ID/Control
tion of Iden- | Control, model estimate and control design, so as to optimize robust performance over the | design
tification and |37(7), July |set of plants consistent with a specified experimental data set.
Robust Con- | 1992, 986-
trol. 991.
9 |J. Chen, G. Gu, and C.N. Nett, 1993, We consider a worse case control oriented identification problem recently studied | 6B
“Worst Case Identification of Continuous |by several authors. This problem is one of the H,, identification in the continuous | continuous
Time Systems via Interpolation.” 1993 time setting. We give a less conservative formulation of this problem. The avail- |time via
American Control Conference, San Fran- |able a priori information consists of a lower bound on the relative stability of the interpola-
cisco, California, June 2-4, 1993. Proceed- | plant, a frequency dependent upper bound on a certain gain associated with the [tion of TFs
ings (American Automatic Control Council, | plant, and an upper bound on the noise level. The available experimental informa-in the fre-
Evanston, Illinois), 1544-1548. tion consists of a finite number of noisy plant point frequency response samples. | quency
The objective is to identify from the given a priori and experimental information |domain;
an uncertain model that includes a stable nominal plant model and a bound on the|uses a pri-
modeling error measured in H,, norm. Our main contributions include both a new | ori info;
identification algorithm and several new explicit lower and upper bounds on the |some good
identification error. The algorithm proposed belongs to the class of interpolatory|lit review
algorithms which are known to posses a desirable optimality property under a cer- |info
tain criterion. The error bounds presented improve upon the previously available
ones in both the aspects of providing a more accurate estimate of the identification
error as well as establishing a faster convergence rate for the proposed algorithm.
10 {J. Chen, G. Gu, and C.N. Nett, 1994. A suboptimal identification algorithm and several improved bounds for identifica- | 6B
“Worst Case Identification of Continuous [tion error are developed based upon the Nevanlinna-Pick interpolation procedure | continuous
Time Systems via Interpolation” Automat- |for a worst case H,. identification problem in the continuous time setting. time via
ica, 30(12), Dec. 1994, 1825-1837. We consider a worst case robust control oriented identification problem |interpola-
recently studied by several authors. This problem is one of H,, identification in |tion of TFs
the continuous time setting. We give a more general formulation of this problem. {in the fre-
The available a priori information in this paper consists of a lower bound on the |quency
relative stability of the plant, a frequency dependent upper bound on a certain gain|domain
associated with the plant, and an upper bound on the noise level. The available
experimental information consists of a finite number of noisy plant point fre-
quency response samples. The objective is to identify, from the given a priori and
experimental information, an uncertain model that includes a stable nominal plant
model and a bound on the modeling error measured in H,, norm. Our main contri-
butions include both a new identification algorithm and several new ‘explicit’
lower and upper bounds on the identification error. The proposed algorithm
belongs to the class of ‘interpolatory algorithms’ which are known to posses a
desirable optimality property under a certain criterion. The error bounds pre-
sented improve upon the previously available ones in the aspects of both providing
a more accurate estimate of the identification error as well as establishing a faster
convergence rate for the proposed algorithm.
11 |J. Chen, Worst Case | 1992 Ameri- |This paper is concerned with a particular control-oricnted system identification | 5B
C.N.Nett, |System Iden- {can Control |problem recently considered by several authors. This problem has been referred
and tification in | Conference, |to as the problem of worst-case system identification in H,, in the literature. The
M. K. H. Fan |H,,: Valida- |Chicago, Illi- | formulation of this problem is worst-case/deterministic in nature. The available
tion of Apri- |nois, June apriori information consists of a lower bound on the relative stability of the plant,
ori 24-26, an upper bound on a certain gain associated with the plant, and an upper bound on
Information, [1992. Pro- [the noise level. The available aposteriori information consists of a finite number
Essentially |ceedings of noisy plant point frequency response samples. The objective is to identify the
Optimal (American |plant transfer function in H,, using the available apriori and aposteriori informa-
Algorithms, {Automatic [tion. In this paper we resolve several important open issues pertaining to this
and Error Control problem. First, a method is presented for developing confidence that the available
Bounds Council, apriori information is correct. This method requires the solution of a certain non-
Evanston, differentiable convex programming problem. This algorithm is (worst-case

Appendix B: Abstracts Related to Hee-based Identification 172

robust version in the presence of noise, especially outliers.

| Authors Tile Source Abstract Notes
12 {J. Chen, Optimal 1992 Ameri- |In this paper we formulate and solve a control-oriented system identification prob-|3C
C.N.Nett, |Non-Para- |can Control }lem for single-input, single-output, linear, shift-invariant, distributed parameter
and metric Sys- |Conference, [plants. In this problem the available apriori information is minimal, consisting
M. K. H. Fan |tem Chicago, Illi- {only of worst-case/deterministic, time dependent, upper and lower bounds on the
Identifica- nois, June plant impulse response and the additive output noise. The available aposteriori
tion From 24-26, information consists of a corrupt finite output time series obtained in response to a
Arbitrary 1992. Pro- |known, non-zero but otherwise arbitrary, applied input. A novel system identifica-
Corrupt ceedings tion method is presented for this problem. This method maps the available aprior
Finite Time |(American |[and aposteriori information into and “uncertain model” of the plant. The resulting
Series: A Automatic |uncertain plant model is comprised of a nominal plant model, a bounded additive
Control-Ori- |Control output noise, and a bounded additive model uncertainty. The upper bound on the
ented Council, model uncertainty is explicit, worst-case/deterministic in nature, and expressed in
Approach. |Evanston, terms of both the /, and H,_system norms. Under the assumption that the available
Illinois), 279-|apriori information is “correct” for the underlying physical plant, the resulting
285. uncertain plant model has the property that it not only “explains™ the available
aposteriori information, but will also explain all aposteriori information observed
in the future. Because this property hinges on the correctness of the available apri-
ori information, a method is also presented for developing confidence that the
available apriori information is in fact correct. Both the method for building con-
fidence in the correctness of the available apriori information and the method for
identifying the uncertain plant model are quite simple computationally, requiring
only the solution of a single linear programming problem. Nonetheless, these
methods can be shown to have certain well-defined, physically meaningful opti-
mality properties. These optimality properties make clear that several aspects of
the methods can not be significantly improved upon. Finally, two special cases of
the ﬁencml methods which arise often in applications are considered in detail. In
the first case the applied input is an impulse function, and in the second case the
applied input is a step function. For these special cases the relevant linear pro-
grams are solved explicitly, and additional optimality results are established.
13 |J. Chen, Worst Case |/EEE Trans- |In this paper we resolve several important open issues pertaining to a worst-case | SB
C. N. Nett, |[System Iden- |actions on |control-oriented system identification problem known as identification in H,,.|develops
and tification in | Automatic First, a method is presented for developing confidence that certain a priori infor- | some new
M. K. H. Fan [H,: Valida- |Control, mation available for identification is not invalid. This method requires the solu- | (subopti-
tion of a Pri- |40(7), July |tion of a certain nondifferentiable convex program. Second, an essentially optimal | mal) algo-
ori 1995, 1260- |identification algorithm is constructed. This algorithm is (worst-case strongly){rithms
Information, |1265. optimal to within a factor of two. Finally, new upper and lower bounds on the
Essentially optimal identification error are derived and used to estimate the identification error
Optimal associated with the given algorithm. Interestingly, the development of each of
Algorithms, these results draws heavily upon the classical Nevanlinna-Pick interpolation the-
and Error ory. As such, our results establish a clear link between the areas of system identi-
Bounds fication and optimal interpolation theory. Both the formulation and techniques in
this paper are applicable to problems where the frequency data available for iden-
tification may essentially be arbitrarily distributed.
14 |J. Chen and S. Wang, 1995. “New Time- | We discuss several issues peltaininéto a time-domain H,, problem. These issues|3C
Domain Algorithms for H_, 1dentification.” |are centered at an inherent trade-off between algorithm optimality and model as
1995 American Control Conference, Seat- |well as computational complexity. We provide a number of simple “nearly” inter-
tle, Washington, June 21-23, 1995. Pro- polatory algorithms which may be employed to lessen somewhat the computa-
ceedings (American Automatic Control tional complexity and for constructing a lower order model.
Council, Evanston, Illinois), 1976-1980.
15 |R. Y. Chiang, |System Iden- | 1993 Ameri- |This paper documents a robust control design experiment in a technology demon- | Od
Y. Yam, tification and {can Control |stration for Advanced Reconfigurable Control (ARC). The objective of the exper- | integrated
E. Mettler, |[H_ Synthe- [Conference, }iment is to develop an integrated identification and robust synthesis methodology | ID/control;
D. S. Bayard, | sis for a Non- [San Fran- for vibration suppression of large space structures. The overall methodology has | same test-
A.Ahmed, |Collocated |cisco, Cali- |been partially implemented and evaluated on a complex flexible structure experi- | bed as ana-
and Space Struc- {fomia, June |ment at JPL. The identification approach is based on a recent frequency domain |lyzed with
F Y. Hadaegh{ture Control {2-4, 1993. method which estimates both a state space model and an additive uncertainty |H,, ID by
Experiment | Proceedings |weighting for robust control Design (Bayard and Yam, “Freq. domain ID for|Friedman
(American |robust control design,” Modeling of Uncertainty in Control Systems, Smith and |and Khar-
Automatic | Doyle, eds., Springer-Verlag, in press). The control part is based on a novel H,/| gonekar
Control H,, approach with a hierarchical MIMO inner/outer loop design structure. This|(1995)
Council, case study indicates that the integrated design methodology provides an effective
Evanston, approach to developing vibration controllers for large space structures, or related
Hllinois), applications involving plants of commensurate complexity.
3033-3037.
16 (H. Daiand |Robust Iden- |/EE Proceed- | A robust method is employed to identify the unknown parameters of both linear|0d
N. K. Sinha |tification of [ings-D Con- |and bilinear systems. Using block-pulse functions, this method expands the sys-
Systems trol Theory |[tem input and output utilising an approach that minimises a robust criterion to
Using Block- |and Applica- |reduce the effect of noise, especially large errors (called outliers) on the expansion
Pulse Func- |tions, coefficients. These coefficients are then used to obtain robust estimates of param-
tions. 139(3), May |eters. A Theorem showing convergence of this method is included. Simulation
1992, 308- {results provided in this paper demonstrate robustness and convergence of the pro-
316. posed robust method. It can be concluded that this method is superior to the non-

Appendix B: Abstracts Related to Heo-based Identification

173

Authors Title Source

Abstract

Notes

17 |H. Daiand |A Robust IEEE Trans-
N. K. Sinha |Off-Line actions on
Output Error | Industrial
Method for | Electronics,
System Iden- |39(4), Aug.
tification. 1992, P285-
292,

In this paper, the “model reference” technique and Huber’s minimax principle
have been successfully used to develop an off-line output error method for robust
identification of systems. This method is named the robust iterative output error
method with modified residuals. A convergence analysis of the proposed method
has been included as well as some simulation results. In the presence of a small
number of large errors (called outliers) in the input-output data, the presented
method has demonstrated its distinctive advantages over not only the nonrobust
methods but also previously developed robust methods. The main advantages are
a fast convergence speed and satisfactory robustness. It can be concluded that the
method developed in this paper is much superior to the other methods and there-
fore can be widely used in many real-time applications.

18 |G. Didinsky, Z. Pan, and T. Basar, 1995.
“Parameter Identification for Uncertain
Plants using H,, Methods.” Automatica,
31(9), Sept. 1995, 1227-1250.

We demonstrate the effective use of H,, filtering and cost-to-come methods for
parameter identification in (deterministic) uncertain plants that are linear in the
unknown parameters, but nonlinear otherwise. The cost-fo-come method is an
approach that has been used earlier to solve linear and nonlinear H,, optimal con-
trol and filtering problems. It consists of constructing a cost-to-come function,
which assists in the design of an ‘optimal’ observer scheme. The method is used
here in the design of a parameter identification scheme for uncertain plants, where
measurements on the state of the system are available, but not on its derivative.
Two approaches are adopted, in both of which the parameter estimation problem is
formulated as an H,, filtering problem. One of the approaches uses a more stan-
dard prefiltering of the past states, input and disturbance signals. The other
approach is a novel design method, which lcads to a new class of identification
schemes. It involves two subproblems: FSDI (full-state-derivative information)
problem, where it is assumed that both the state and its derivative are available to
the parameter estimator, and NPFSI (noise-perturbed FSI) problem, where the
estimator is assumed to measure a noise-perturbed measurement of the state. In
the latter problem we use singular perturbation methods to prove asymptotic con-
vergence of the performance of the identifier to that of the unperturbed case, thus
providing an asymptotically optimal solution to the FSI (full-state measurement)
problem. To illustrate both approaches, several simulation studies on a numerical
example are provided.

6b
requires at
least full
state feed-
back; nota-
bly
different
from other
H,ID
schemes

19 | B. Franke Optimal 1993 Ameri-
and Identifica- can Control
P. Lohnberg |tion Time for | Conference,
Control San Fran-
cisco, Cali-
fornia, June
2-4, 1993.
Proceedings
(American
Automatic
Control
Council,
Evanston,
linois),
1549-1553

This paper deals with consecutive (open-loop) identification and (closed-loop)
control of a linear, time-invariant SISO process. The partition of a fixed total time
between identification and control is optimised according to and LQ criterion. For
a static gain process, an analytical expression for the optimal identification time as
a function of the a priori parameter mean and variance is derived. For an integra-
tor process, the optimal identification time obtained from simulations is approxi-
mated by an analytical formula. Both procedures are applied on-line by replacing
the a priori statistics by their estimates. Finding an analytical expression for
higher order processes appeared infeasible. Therefore, for a static gain process, at
cach sampling instant, the predicted cost for continuing identification is compared
to the predicted cost for starting control. This procedure is expected to be applica-
ble for dynamical systems of high order.

od

20 {J.H. Friedman, 1996. “Identification, Mod-
eling, and Control of Flexible Structures.”
Ph.D. dissertation, Department of Aero-
space Engineering, University of Michigan,
Ann Arbor, Michigan, 1996.

Two important components in control design are the model development prior to
control design and the performance analysis after the design is complete. Model
development generally falls into two categories: (1) first principles modeling
based on the physics of the individual components of a system; and (2) system
identification based on experimental data. The problem of performance analysis
can be quite broad, ranging from the step response of a system to the computation
of system norms. In this dissertation we address problems from both of these
fields of research.

The modeling work presented in this dissertation includes both first princi-
ples and experimental modeling. We develop a first principles model of the
dynamics of an M1/M1A1 tank as a motivational example and a simulation test-
bed on which we demonstrate the identification and control analysis tools devel-
oped in this dissertation. In the field of identification there are a number of
methods available to engineers. Among these methods, the algorithms for solving
the problem of identification in H,, have received much attention recently. The
focus of the attention has been to develop the theoretical properties of the algo-
rithms; however, less attention has been paid to the engineering applications of the
algorithms. It is this practical application which is the primary focus of our work
in system identification. This dissertation includes results on the key issues in
engineering applications of the two-stage nonlinear algorithms, a step-by-step rec-
ipe for the selection of the design parameters, and heuristic rules for successful
applications.

In the area of performance analysis, we examine the computation of the
worst-case and average H, norm of a family of linear systems with constant real
parametric uncertainty. It is shown that when the system matrices depend affinely
on real uncertain parameters, any quadratic performance index will be a rational
function of these parameters. Using this fact, in the case of a single real parame-
ter, the computation of the worst-case H, norm is quite similar to the computation
of the H,, norm of an auxiliary system and the average performance becomes the
integral of a rational function. Several examples are included to illustrate the util-
ity of these results.

10A

Appendix B: Abstracts Related to Heo-based Identification 174

1993 American Control Conference, San
Francisco, California, June 2-4, 1993. Pro-
ceedings (American Automatic Control
Council, Evanston, Illinois), 3052-3056.

| Authors Title l Source Abstract Notes
21 |J.H. Friedman and P.P. Khargonekar, In this paper, we compare the results of the following frequency identification|10A
1995a. “A Comparative Applications Study |algorithms: Sanathanan and Koerer (SK) algorithm, nonlinear least squares via|good, but
of Frequency Domain Identification Tech- |Levenberg-Marquardt method, and the two-stage nonlinear algorithm. We also | very brief,
niques.” 1995 American Control Confer- |present a recipe for the application of the two-stage nonlinear algorithm. The|summary
ence, Seaitle, Washington, June 21-23, emphasis of this paper is on the application and comparison of the algorithms|of the 2-
1995. Proceedings (American Automatic |developed in the literature to three case studies. stage non-
Control Council, Evanston, Illinois), 3055- linear H_,
3059. ID method,;
brief exami-
nation of a
few exam-
ples
22 |J.H. Friedman and P.P. Khargonekar, This paper presents an approach to the frequency domain identification of lightly | 10A
1995b. “Application of Identification in H,, |damped systems. It is based on the recent work in the area of identification in H,,. | excellent
to Lightly Damped Systems: two case The emphasis of this paper is on the application of the algorithms developed in the | example on
studies.” IEEE Transactions on Control literature to two case studies. Results show that the algonithms for identification in | real struc-
Systems Tecknology, 3(3), Sept. 1995, 279- | H,, are capable of producing good models for highly flexible systems. tures
289.
23 1G. C. Good- |Quantifying |/EEE Trans- (Previous results on estimating errors or error bounds on identified transfer func-|0d
win, the Errorin |actionson [tions have relied upon prior assumptions about the noise and the unmodeled
M. Gevers, |Estimated Automatic dynamics. This prior information took the form of parameterized bounding func-
and Transfer Control, tions or parameterized probability density functions, in the time or frequency
B. Ninness | Functions 37(7), July |domain with known parameters. Here we show that the parameters that quantify
with Applica- 1992, 913- |this prior information can themselves be estimated from the data using a maxi-
tion to 928. mum likelihood technique. This significantly reduces the prior information
Mode! Order required to estimate transfer function error bounds. We illustrate the usefulness of
Selection. the method with a number of simulation examples. The paper concludes by show-
ing how the obtained error bounds can be used for intelligent model order selec-
tion that takes into account both measurement noise and under-modeling. Another
simulation study compares our method to Akaike's well-known FPE and AIC cri-
teria.
24]G.Gu Suboptimal (/EEE Trans- |New algorithms based on convex programming are proposed for worst case sys-|SB
Algorithms |actions on {tem identification. The algorithms are optimal with a factor of two asymptotically. | more sub-
for Worst Automatic | Further, mode! validation, or data consistency, is embedded in the identification | optimal
Case Identifi- | Control, process. Explicit worst case identification error bounds in the H,, norm are also|algorithms
cation in H,, 139(8), Aug. lderived for both uniformly and nonuniformly spaced frequency response samples.
and Model |1994, 1657-
Validation 1661.
25 |G. Gu, C.-C. Chu, and G. Kim, 1994. “Lin-|This paper is concerned with linear algorithms for identification in H,, which have |6B
ear Algorithms for Worst Case Identifica- |been studied in (Helmicki, Jacobson, and Nett, 1993. “Identification in H,,: linear
tion in M, with Applications to Flexibie algorithms.” IEEE Transactions on Automatic Control, 38, May 1993, 819-826).
Structures.”” 1994 American Control Con- (It is shown that the two different linear algorithms in (ibid.) can be unified into a
| ference, Baltimore, Maryland, June 29 - single one which can be further extended to nonuniformly spaced frequency
July 1, 1994. Proceedings (American response samples with exponential convergence for the noise free case. Improved
Automatic Control Council, Evanston, Illi- |upper bounds for the corresponding identification errors are derived. Applications
nois), 112-116. to the identification of lightly damped systems such as flexible structures are also
considered.
26 |G. Gu and P.P. Khargonekar, 1991. “Linear |In this paper, a linear and a nonlinear algorithm are presented for the problem of | 10A
and Nonlinear Algorithms for Identification |system “identification in H,,,” posed by Helmicki, Jacobson, and Nett. We derive
in H,, with Error Bounds.” 1991 American |some error bounds for the linear algorithm which indicate that if the model error is
Control Conference, Boston, Massachu- not too high, then this algorithm has good guaranteed error properties. The linear
setts, June 26-28, 1991. Proceedings algorithm requires only FFT (fast Fourier transform) computations. A nonlinear
(American Automatic Control Council, algorithm, which requires an additional step of solving a Nehari best approxima-
Green Valley, Arizona), 64-69. tion problem, is also presented that has the robust convergence property.
27 | G. Gu and P.P. Khargonekar, 1992a. “A In this paper, a class of algorithms for the problem of system identification in H_ | 10A
Class of Algorithms for Identification in are investigated. These algorithms are characterized by a two-stage structure and | great expla-
H,” Automatica, 28(2), March 1992, 299- |involve a class of window functions. Some conditions in terms of properties of the | nation of
312. window functions are derived, which guarantee robust convergence of the algo-|basic H_, ID
rithms. Identification errors are analyzed for several common window functions. | algorithm;
This leads to some insights into the trade-off between the error induced by approx- | good ana-
imation and that due to noise. lytical
example
28 1G. Gu and P.P. Khargonekar, 1992b. “Lin- |In this paper, a linear algorithm and a nonlinear algorithm are presented for the| 10A
ear and Nonlinear Algorithms for Identifi- | problem of “system identification in H,,,” posed by Helmicki, Jacobson, and Nett|good expla-
cation in H,, with Error Bounds.” IEEE for discrete-time systems. We derive some error bounds for the linear algorithm | nation of
Transactions on Automatic Control, 37(7), |which indicate that it is not robustly convergent. However, the worst-case identifi- | basic H,, ID
July 1992, 953-963. cation error is shown to grow as log(n) where 7 is the model order. A new robustly | algorithm;
convergent nonlinear algorithm is derived, and bounds on the worst-case identifi-| good ana-
cation error (in the H,, norm) are obtained. lytical
example
29 |G. Gu and P.P. Khargonekar, 1993. “Fre- | This paper describes application of the recent work on “identification in H..” to| 10A
quency Domain Identification of Lightly [the data for a JPL flexible space structure. practical
Damped Systems: The JPL Example.” example

Appendix B: Abstracts Related to Heo-based Identification

175

| Authors] Title I Source Abstract Notes
30 | G. Gu, P.P. Khargonekar, and E.B. Lee, Approximation of infinite-dimensional system models was studied using a Fourier|0C
1989. “Approximation of Infinite Dimen- |transform technique. Convergence conditions were established and a frequency
sional Systems.” IEEE Transactions on response error bound in terms of the H,, norm derived. The approximate model
Automatic Control, 34(6), June 1989, 610- {can b:ddirectly computed using an FFT type algorithm. Examples illustrate the
618. method.
31|G.Guand |Identifica- IEE Proceed- | A unified approach is developed for identification of linear time-invariant systems. | 5B
P. Misra. tion of Linear |ings-D Con- |Itis shown that, given the experimental frequency-response data of the system, the | studies the
Time-Invari- |trol Theory |plant can be identified using a simple, numerically reliable algorithm. Further, an|divergence
ant Systems | and Applica- |emror bound is derived for exponentially stable systems when the frequency-|rate of lin-
From Fre- tions, response data are corrupted by bounded noise. An example is presented to illus-{ear H,, ID
quency- 139(2), trate the proposed algorithm. algorithms
Response March 1992, with noisy
Data Cor- 135-140. data
rupted By
Bounded
Noise.
32 | AJ. Helmicki, C.A. Jacobson, and C.N. In this paper several techniques are given for the identification of stable LSI dis-|10A
Nett, 1989. “H, Identification of Stable LSI |crete time systems from input-output data. Explicit H,, norm error bounds are |one of the
Systems: A Scheme with Direct Applica- | given and convergence in the noise free and the uniformly bounded deterministic | earliest
tion to Controller Design.” 1989 American |noise case are established. The assumptions made on the unknown system are| papers on
Control Conference, Pittsburgh, Pennsylva- | minimal and are limited throughout the paper to a lower bound on the decay rate(H,, ID
nia, June 21-23, 1989. Proceedings (Amer- | of the unknown system and an upper bound on the gain of the unknown system.
ican Automatic Control Council, Green Given this information an experiment and a construction are specified: the experi-
Valley, Arizona), 1428-1434. ment involves obtaining a specified number of frequency measurements of the
unknown systems at a set of specified frequencies; the construction uses this
experimental data to generate an identified model with prescribed H.., norm error
tolerance to the unknown system. The resulting model identification process is
highly efficient from a computational point of view.
33 [A.J. Helmicki, C. A Jacobson, and C.N. |In this paper a system identification technique is developed which is compatibie| 10A
Nett, 1990a. “Identification in H,.: A with current robust controller design methodologies. This technique is applicable
Robustly Convergent, Nonlinear Algo- to a broad class of stable, distributed, linear, shift-invariant systems. The informa-
rithm.” 1990 American Control Conference, |tion necessary for the application of this technique consists of a priori estimates on
San Diego, California, May 23-25,1990. |the relative stability and “steady state” gain of the unknown system together witha
Proceedings (American Automatic Control |finite number of possibly corrupt frequency response estimates. Given this infor-
Council, Green Valley, Arizona), 386-391. |mation an algorithm is specified which yields both an identified model and explicit
H,, norm error bounds. Several interesting properties of this algorithm are also
discussed. Among them, the fact the algorithm is a nonlinear function of the fre-
quency response data, and that it is robustly convergent with respect to the a prior
information on relative stability and gain are singled out as characteristics which
distinguish this algorithm from other currently under development by the authors.
34 | AJ. Helmicki, C.A. Jacobson, and C.N. 7B
Nett, 1990b. “Identification in H,,: The
Continuous-Time Case.” 1990 American
Control Conference, San Diego, Califomia,
May 23-25, 1990. Proceedings (American
Automatic Contro! Council, Green Valley,
Arizona), 1893-1898.
35|A.). Helmicki, C.A. Jacobson, and C.N. In this paper a series of system identification techniques are developed which are [10A
Nett, 1990c. “Identification in H__: Linear {compatible with current robust controller design methodologies. These tech-
Algorithms”* 1990 American Control Con- |niques are applicable to a broad class of stable, distributed, linear, shift-invariant
ference, San Diego, California, May 23-25, |systems. The information necessary for their application consists of a priori esti-
1990. Proceedings (American Automatic |mates on the relative stability and “steady state gain™ of the unknown system
Control Council, Green Valley, Arizona), |together with a finite number of possibly corrupt frequency response samples.
2418-2423. Given this information the algorithms established yicld both identified models and
explicit H,, norm error bounds. These algorithms are developed as extensions of a
recently proposed polynomial interpolation approach to H,,, identification which is
shown here to diverge in the face of corrupted data. The fact that these algorithms
are linear functions of the frequency response data and depend explicitly on the a
priori information are singled out as characteristics which distinguish them from
other algorithms recently established by the authors.

Appendix B: Abstracts Related to Heo-based Identification

176

Authors] Title l Source

Abstract

Notes

36

A.J. Helmicki, C.A. Jacobson, and C.N.
Nett, 1991a. “Fundamentals of Control-
Oriented System Identification and Their
Application for Identification in H_,™ 1991
American Control Conference, Boston,
Massachusetts, June 26-28, 1991. Proceed-
ings (American Automatic Control Council,
Green Valley, Arizona), 89-99.

This paper examines the system identification problem from the standpoint of con-
trol system design. Noting first that nearly all robust control design methods
require explicit worst-case/deterministic bounds on the existing plant uncertainty,
it is argued that the class of system identification methods which are inherently
compatible with robust control design methods — or control-oriented — is a sub-
set of the class of system identification methods which yield and explicit worst-
case/deterministic bound on the resulting identification error. An abstract theoret-
ical framework for control-oriented system identification is then developed. This
framework is inherently worst-case/deterministic in nature, and makes precise
such notions as identification error, algorithm convergence, and algorithm opti-
mality from a worst-case/deterministic standpoint. Finally, the abstract theoretical
framework is utilized to formulate and solve two related control-oriented system
identification problems for stable, linear shift invariant, distributed parameter
plants. In each of these problems the assumed a priori information is minimal,
consisting only of a lower bound on the relative stability of the plant, an upper
bound on a certain gain associated with the plant, and an upper bound on the noise
level. In neither case are any assumptions made concerning the structure of either
the plant (i.c., dynamic order, relative order, etc.) or the noise (i.e., zero-mean,
etc.). The first of these problems involves identification of a point sample of the
plant frequency response from a noisy, finite, output time series obtained in
response to an applied sinusoidal input with frequency comresponding to the fre-
quency point of interest. This problem leads naturally to the second problem,
which involves identification of the plant transfer function in H,, from a finite
number of noisy point samples of the plant frequency response. Robust conver-
gent, (essentially) asymptotically optimal plans of identification algorithms are
rovided for each of these two problems. The plans provided for the second prob-
em yield and explicit worst-case/deterministic bound on the H_-norm of the
resulting identification error at each step of the plan. As such, the identification
methods obtained by combining the given plans for the two problems are well-
suited for use in conjunction with currently popular H,, robust control design
methods, and hence may be regarded as being inherently control-oriented.

10A
excellent
for back-
ground and
lit. review

Ky}

A.J. Helmicki, C.A. Jacobson, and C.N.
Nett, 1991b. “Control Oriented System
Identification: A Worst-Case Deterministic
Approach in H,,"” IEEE Transactions on
Automatic Control, 36(10), Oct. 1991,
1163-1176.

In this paper we formulate and solve two related control-oriented system identifi-
cation problems for stable linear shift-invariant distributed parameter plants. In
each of these problems the assumed a priori information is minimal, consisting
only of a lower bound on the relative stability of the plant, an upper bound on a
certain gain associated with the plant, and and upper bound on the noise level. In
neither case are any assumptions made concerning the structure of either the plant
(i.e., dynamic order, relative order, etc.) or the noise (i.c., zero-mean, etc.). The
first of these problems involves identification of a point sample of the plant fre-
quency response from a noisy finite output time series obtained in response to an
applied sinusoidal input with frequency corresponding to the frequency point of
interest. This problem leads naturally to the second problem, which involves iden-
tification of the plant transfer function in H,, from a finite number of noisy point
samples of the plant frequency response. Concrete plans of identification algo-
rithms are provided for each of these two problems. Explicit worst-case/determin-
istic error bounds are provided for each algorithm in these plans. These bounds
establish that the given plans of algorithms are robustly convergent and (essen-
tially) asymptotically optimal. Additionally, these bounds provide an g priori
computable H,, uncertainty specification, corresponding to the resulting identified
plant transfer function, as an explicit function of the plant a priori information,
noise a priori information, and experiment duration. As such, the approach to sys-
tem identification developed in this paper is well-suited for use in conjunction
with currently popular H,, robust control design methods, and for this reason may
be regarded as being inherently control-oriented.

10A

good intro
and sum-
mary; con-
fusing
derivation
of linear
algorithm
with a pri-
ori informa-
tion
requirement

38

A.J. Helmicki, C.A. Jacobson, and C.N.
Nett, 1992. “Worst-Case Deterministic
Identification in H,,: The Continuous-Time
Case.” IEEE Transactions on Automatic
Control, 31(5), May 1992, 604-610.

In this note, recent results obtained by the authors for worst-case/deterministic H,,,
identification of discrete-time plants are extended to continuous-time plants. The
problem considered involves identification of the transfer function of a stable
strictly proper continuous-time plant from a finite number of noisy point samples
of the plant frequency response. The assumed a priori information consists of a
lower bound on the relative stability of the plant, an upper bound on a certain gain
associated with the plant, an upper bound on the “roll-off rate” of the plant, and an
upper bound on the noise level. Concrete plans of identification algorithms are
provided for this problem. Explicit worst-case/deterministic error bounds are pro-
vided for each algorithm in these plans. These bounds establish that the given
plans of algorithms are robustly convergent and (essentially) asymptotically opti-
mal. Additionally, these bounds provide an a priori computable H_, uncertainty
specification, corresponding to the resulting identified plant transfer function, as
an explicit function of the plant and noise a priori information and the data cardi-
nality.

7B
continuous-
time; some
good intro
material

Appendix B: Abstracts Related to Hee-based Identification

177

| Authors Title Source Abstract Notes
39 |A.J. Helm- |Least 1992 Ameri- |This paper presents a series of system identification algorithms that yield identi- |6B
icki, Squares can Control |fied models which are compatible with current robust controller design methodol-
C. A. Jacob- |Methods for |Conference, |ogies. These algorithms are applicable to a broad class of stable, distributed,
son, H,, Control- |Chicago, Illi- | linear, shift-invariant plants. The a priori information necessary for their applica-
and C.N. Oriented Sys- | nois, June tion consists of a lower bound on the relative stability of the unknown plant, an
Nett. tem Identifi- [24-26, upper bound on a certain gain associated with the unknown plant, and an upper
cation. 1992. Pro- |bound on the noise level. The a posteriori data information consists of a finite
ceedings number of noise point frequency response estimates of the unknown plant. The
(American |specific contributions of this paper are to examine the extent to which certain stan-
Automatic | dard Hilbert space or least squares methods are applicable to the H,, system iden-
Control tification problem considered. Results are established that connect the H, error of
Council, the least square methods to the H,, error needed for control-oriented system iden-
Evanston, tification. In addition, the notion of a posteriori error bounds is introduced and
Tlinois), 258- | used to establish sequentially optimal or adaptive algorithms based on these Hil-
264. bert space approaches.
40 |A.J. Helm- |Least IEEE Trans- | This note presents a series of system identification algorithms that yield identified | 5B
icki, Squares actions on models which are compatible with current robust controller design methodologies.
C. A. Jacob- |Methods for |Automatic | These algorithms are applicable to a broad class of stable, distributed, linear, shift-
son, H_, Control- |{Control, invariant plants. The a priori information necessary for their application consists
and C. N. Oriented Sys-|38(5), May {of a lower bound on the relative stability of the unknown plant, an upper bound on
Nett tem Identifi- |1993, 819- |a certain gain associated with the unknown plant, and an upper bound on the noise
cation. 826. level. The a posteriori data information consists of a finite number of corrupted
point frequency response estimates of the unknown plant. The specific contribu-
tions of this note are to examine the extent to which certain standard Hilbert space
or least squares methods are applicable to the H,, system identification problem
considered. Results are established that connect the H, error of the least squares
methods to the H,, error needed for control-oriented system identification.
41 [H. Hjalmars- [Estimating | /EEE Trans- |A reliable quality estimate of a given model is a prerequisite for any reasonable | 0d
son Model Vari- |actions on use of the model. The model error consists of two different contributions: the bias
and L. Ljung fancein the {Automatic error and the random error. In this contribution, we show how the size (variance)
Case of Control, of the random error can be reliably estimated in the case where a true system
Undermodel- |37(7), July |description cannot be achieved in the model structure used. This consistent error
ing. 1992, 1004- |estimate can differ considerably from the conventionally used variance estimates
1008. which thus, could be quite misleading.
42 | C.A. Jacobson and G. Tadmor, 1993. “A [This paper presents an analysis of H,, system identification where the apriori|7B
Note on H,, System Identification With information given on the unknown system to be identified is described probabilis- | combines
Probabilistic Apriori Information” 1993 [tically. The H,, system identification problem concerns the construction of a lin- | probabilis-
American Control Conference, San Fran- |ear shift invariant exponentially stable system from a combination of apriori and|tic a priori
cisco, California, June 2-4, 1993. Proceed- |experimental information. The goal is to construct both a nominal system and an|bounds with
ings (American Automatic Control Council, |explicit quantification of model uncertainty in the H,, norm utilizing the apriori|H_, ID
Evanston, Illinois), 1539-1543. and experimental information. The experimental information assumed available
in this paper is a set of corrupted point frequency estimates of the unknown sys-
tem. The apriori information consists of a probability measure specifying the
probability of bounds on the norm of the derivative of the unknown system. The
problem formulation is given for this probabilistic setting with the error criterion
allowing a probabilistic tolerance of identification to be given. It is shown that the
probabilistic H,, problem is equivalent to a worst case problem that is constructed
from the probabilistic one. This construction allows near optimal algorithms to be
constructed for the probabilistic H,,, identification problem.
43 |1. Kolldr On Fre- IEEE Trans- |The maximum-likelihood estimation of the parameters of linear systems and the [Od
quency- actions on properties of the estimator (Estimator for Lincar Systems, ELiS) have been|complex-
Domain Instrumenta- |described in a paper by R. Pintelon and J. Schoukens ("Robust identification of |domain
Identifica- tion and transfer functions in s- and z-domain,” JEEE Transactions on Instrumentation and|description
tion of Linear | Measure- Measurement, 39, Aug. 1990, 565-573). The mathematics used in the develop-|of the maxi-
Systems. ment, 42(1), |ment of the method and the proofs are rather involved. However, several state- [mum-likeli-
Feb. 1993, 2- [ments can be understood in heuristic terms. hood ID
6. This paper discusses the complex-domain description of the method, which| method
results in much simpler expressions. The method is also compared to other forma-
tions, giving more insight into the properties of the estimate. It turns out that
robustness is at least partly due to the least-squares formulation.
Derivations are avoided where possible, and intuitive explanations are given
instead.
44 |R.L. Kosut, G.C. Goodwin, and M.P. Polis, | Introduction to the special issue. 2c
1992. “Introduction, Special Issue on Sys- some over-
tem Identification for Robust Control all com-
Design.” IEEE Transactions on Automatic ments
Control, 37(7), July 1992, 899.
45 [R. L. Kosut, |Set-Member- |/EEE Trans- |A method is presented for parameter set estimation where the system model is|Od
M.K.Lau, {ship Identifi- |actions on |assumed to contain both parametric and nonparametric uncertainty. In the distur-
and cation of Automatic | bance-free case, the parameter set estimate is guaranteed to contain the parameter
S.P.Boyd |Systems Control, set of the true plant. In the presence of stochastic disturbances, the parameter set
with Para- 37(7), July |estimate obtained from finite data records is shown to have the property that it
metric and 1992,929- |contains the true-plant parameter set with probability one as the data length tends
Nonparamet- [941. to infinity.
ric Uncer-
tainty.

Appendix B: Abstracts Related to Hoo-based Identification 178

ceedings (American Automatic Control
Council, Evanston, Illinois), 1554-1560.

present work comes from currently active research problems concerning modeling
for robust control design from experimental data.

Several results are given on various aspects of approximation algorithm per-
formance, and on robust convergence. A constrained least absolute deviations
method based on minimizing the value of the error averaging prior subject to a
modeling prior restricting the complexity of the behaviour of the model is pro-
posed. This linear programming method is a strongly optimal algorithm within
factor two with respect to the model and error priors used in its construction.
Relationships between problems of identification of nominal models and uncer-
tainty modeling are studied.

| Authors Title Source Abstract Notes

46 |). M. Krause |A Compari- |/EEE Trans- |This note compares the formulation and solution of two linear parameter estima- | 5B
and son of Classi-|actions on |tion problems. The basic distinction in the problem formulations is the nature of
P.P. Khar- |[calStochastic |Automatic ~ |the uncertainty. In one case, the uncertainty is gencrated by white Gaussian noise,
gonekar Estimation | Control, and the solution is the Kalman filter. In the other case, the uncertainty is unmod-

and Deter- |37(7), July |eled dynamics in the unit ball in H,, or its nonlinear cover, and the particular solu-

ministic 1992,994- |tion studied here is a deterministic robust estimator which was introduced circa

Robust Esti- {1000. 1987.

mation. This note examines certain parallels between classical stochastic estimation
(Kalman filtering) and the deterministic robust estimation. The similarities and
differences are discussed in geometric terms, in philosophical terms, and in terms
of the estimator’s recursive implementation.

47 | PM. Mikil4, 1991a. “Laguerre Methods | H,, identification of stable continuous-time systems is studied using generalized|8B
and H_, Identification of Continuous-Time |Laguerre series methods. The theoretical basis of generalized Laguerre series|good intro
Systems.” International Journal of Control, | methods in H,, identification is established by giving several results on frequency- | and com-
53(3), March 1991, 689-707. unweighted and frequency-weighted approximations of different classes of infinite | ments on

dimensional systems. An H_, identification technigue based on step response data | continuous-
and Laguerre methods is given and analysed. Generalized Laguerre series meth- |time H,, ID
ods are shown to provide H,, identification techniques which allow for frequency

weighting. Furthermore, it is demonstrated that the theory of generalized

Lnf:cn'e polynomials solves certain approximation problems in an analytical

fashion for a class of delay systems.

48 |P. M. Mikili [On Identifi- |Automatica, | Approximative modelling of stable continuous-time, possibly infinite dimen-}7B
cation of Sta- {27(4), July |{sional, systems is studied based on an optimal approximation approach. Both
ble Systems {1991, 663- lapproximation of analytical system representations (system approximation) as
and Optimal]676. well as approximation of input-output data based system estimates (system identi-
Approxima- fication) are considered. While special emphasis is given to approximative model-
tion. ling in the H,, and Hankel norms, the /; and ’2 norm cases are also discussed. The

model sets considered here are finite dimensional systems and time shift systems
(simple delay systems). The theory of approximation numbers is shown to pro-
vide a convenient tool to study problems of identification of stable continuous-
time systems in a deterministic framework with close connections to complexity
considerations. Laguerre-Fourier series methods and Hankel operator techniques
can be utilized to develop fully practical identification methods for continuous-
time, possibly infinite dimensional, systems.

49 |P. M. Mikild |Identifica- |Interna- Approximate modelling and identification of linear shift-invariant, possibly unsta- | 0C
tion of Stabi- |fional Jour- |[ble, discrete-time systems, or plants, is studied in a framework compatible with
lizable nal of the so-called robust stability concept for feedback systems. This unified frame-
Systems: Control, work is based on approximate modelling of the plant in the gap and graph metrics
Closed-Loop |54(3), Sept. |which is achieved here through approximation of certain closed-loop transfer
Approxima- (1991,577- |functions by finite-dimensional systems. Properties of this approximate inverse
tion. 592. modelling approach are studied and concrete rate of approximation results are

given. Furthermore, a consistency result in the gap and graph metrics is given for
a certain experimental estimate of the plant constructed from closed-loop input-
o;:tput data in a stationary noise set-up under mild conditions on the unknown
plant.

50 | PM. Mikil4, 1991b. “Robust Identification | Worst-case I, identification is studied for BIBO stable linear shift-invariant sys-|4B
and Galois Sequences.” International Jour-|tems. It is shown that the Chebyshev identification method when used with Galois |/; identifi-
nal of Control, 54(5), Nov. 1991, 1189- input designs satisfies a certain robust convergence property and provides /; model | cation
1200. error bounds in worst-case identification of BIBO stable systems with a uniformly

bounded noise set-up. The robust identification methodology developed is com-
patible with the modelling requirements of modern robust control design.

51 {PM. Mikil4, 1992. “Worst-Case Input- We consider worst-case /; identification of causal linear shift-invariant systems|3C
Output Identification.” International Jour- |from time series. Many results are given on general aspects of identification algo-{/; identifi-
nal of Contral, 56(3), Sept. 1992, 673-689. [rithm performance, existence of optimal algorithms, robust convergence, and|cation

input (experiment) design. The identification methodology studied here is com-
patible with the modelling requirements of modern robust control design.

52 | PM. Mikild, 1993. “Robust Approximate |We consider approximate modeling of stable linear shift-invariant systems in the |5B
Modeling from Noisy Point Evaluations.” |H,, sense from approximate point evaluations at approximately known frequen- | helpful lit
1993 American Control Conference, San |cies. Two error structures for the point evaluations are studied: pointwise |review sec-
Francisco, California, June 2-4, 1993. Pro- |bounded error and a certain error averaging structure. A main motivation for the | tion.

Appendix B: Abstracts Related to Heo-based Identification

179

Authors Title l Source

Abstract

Notes

53

PM. Mikild and J.R. Partington, 1991.
“Robust Approximation and Identification
in H,,"” 1991 American Control Confer-
ence, Boston, Massachusetts, June 26-28,
1991. Proceedings (American Automatic
Control Council, Green Valley, Arizona),
70-76.

Robust Approximation and identification of stable shift-invariant systems is stud-
ied in the H,, sense using a stable perturbation set-up. Issues of model set selec-
tion are addressed using the n-width concept: a concrete result establishes a priori
knowledge for which a certain rational model set is optimal in the n-width sense.
A general construction of interest to identification theory using € -nets provides
near-optimal identification methods tuned to the a priori knowledge about the sys-
tem.

A notion of robust convergence is defined so that any untuned identification
method satisfying it has a generic well-posedness property for systems in the disk
algebra. The existence of robustly convergent identification methods based on any
complete model set in the disk algebra is established. It is also shown that the
classical Fejér and de la Vallée-Poussin polynomial approximation operators pro-
vide robustly convergent identification methods. Furthermore, a result is given for
optimal Hankel norm model reduction from experimentally obtained models.

78

PM. Mikili and J.R. Partington, 1992a.
“Worst-Case Identification from Closed-
Loop Time Series.” 1992 American Con-
trol Conference, Chicago, Illinois, June 24-
26, 1992. Proceedings (American Auto-
matic Control Council, Evanston, Illinois),
301-306.

This paper studies identification of linear shift-invariant systems from closed-loop
time series. Identification (or modelling) error is measured here by distance func-
tions which lead to the weakest convergence notions for systems such that closed-
loop stability, in the sense of BIBO stability, is a robust property. Thus the identi-
fication methodology developed here is compatible with the requirements of
robust control design under /.-stable coprime factor uncertainty. Worst-case iden-
tification error bounds in several distance functions are included.

6B

55

P.M. Mikils and J.R. Partington, 1992.
“Robust Identification of Strongly Stabiliz-
able Systems.” IEEE Transactions on Aulo-
matic Control, 37(11), Nov. 1992, 1709-
1716.

For strongly stabilizable systems for which a strongly stabilizing controller is
known approximately, we consider system identification in the graph, gap, and
chordal metrics using robust H,, identification of the closed-loop transfer function
in the framework proposed by Helmicki, Jacobson, and Nett. Ermor bounds are
derived showing that robust convergence is guaranteed and that the identification
can be satisfactorily combined with a mode! reduction step. Two notions of robust
identification of stable systems are compared, and an alternative robust identifica-
tion technique based on smoothing, which can be used to yield polynomial models
directly, is developed.

7B
some good
intro mate-
rial

56

P. M. Mikil4d |Robust Stabi- | Automatica,
and lization — 29(3), May
J. R. Parting- | BIBO Stabil- | 1993, 681-
ton ity, Distance |693.

Notions and

Robustness

Optimiza-

tion.

This paper studies robust stabilization of both linear shift-invariant causal systems
in an I, sctting and linear time-invariant causal continuous-time systems in an L?
(p =1 or =) setting. Two key technical results in the paper establish the exist-
ence of [, and L? stable normalized coprime factorizations for discrete-time and
continuous-time systems, respectively, which have coprime factorizations as [,
and LP stable operators. Several distance measures for systems are then intro-
duced including the graph metric, the p function, the gap between the graphs of
the systems, and the projection gap. It is shown that these distance measures lead
to the weakest convergence notions for systems for which closed-loop stability is a
robust property. The p function can be computed using the Dahleh-Pearson the-
ory for I; (L!) optimal control.

Robustness optimization in a directed P function is shown to be closely
related to robustness optimization for BIBO stable normalized coprime factor per-
turbations. This result connects the stability margin of Dahleh for coprime factor
perturbations to the p function. These considerations are further supported by a
robustness result in terms of the projection gap.

57

P.M. Miikili and J.R. Partington, 1993.
“Robust Approximate Modelling of Stable
Linear Systems.” International Journal of
Control, $8(3), Sept. 1993, 665-683.

Robust approximation and worst-case approximate modelling of stable shift-
invariant systems from corrupted transfer function estimates are studied in the H,,,
sense. Connections between the problem formulations of the present work and
certain problems of worst-case system identification, notably the Helmicki-Jacob-
son-Nett problem formulation for identification in H,,, are established. Issues of
model set selection are addressed using the n-width concept: a concrete result
establishes a priori knowledge for which a certain rational model set is optimal in
the n-width sense. A notion of robust convergence is defined so that any untuned
approximation method satisfying it has a generic well-posedness property for sys-
tems in the disk algebra. The existence of robustly convergent approximation
methods based on any complete model set in the disk algebra is shown in a con-
structive way. A framework is given in which approximate models can be
obtained as stable perturbations of the true system: these can be combined with the
classical Fejér and de la Vallée-Poussin polynomial approximation operators to
provide robustly convergent approximation methods. Furthermore, concrete
results are given for the fundamental problem of model reduction from corrupted
transfer function estimates or from experimentally obtained models for the opti-
mal Hankel norm approximation method and for a least squares method.

6B

58

P.M. Mikil4, J.R. Partington, and T. K.
Gustafsson, 1995. “Worst-case Control-rel-
evant Identification.” Automatica, 31(12),
Dec. 1995, 1799-1819.

During the past five years or so, several new research topics have emerged around
issues of modelling of systems from data for the purpose of robust control design.
These new topics include, among other things, identification in H,,, identification
in /|, and model validation of uncertainty models.

This paper introduces the reader to several recent developments in worst-
case identification motivated by various issues of modelling of systems from data
for the purpose of robust control design. Many aspects of identification in H, and
1) are covered including algorithms, convergence and divergence results, worst-
case estimation of uncertainty models, model validation and control relevancy
issues.

9A
excellent,
though
very brief,
summary
of H,, and
{; identifi-
cation

Appendix B: Abstracts Related to Heo-based Identification

180

| Authors Title Source Abstract Notes

59 |[M. A. Mend- |!,-Optimal |/EEE Trans- |A lincar multichannel estimation problem with discrete-time linear shift-invariant 0d
lovitz timation |actions on models is formulated in the time domain as a minimum /; norm approximation

for Discrete- |Signal Pro- |problem. It is shown, using some key results from optimization theory, that solv-
Time Linear |cessing, ing the approximation problem is equivalent to solving a sequence of linear pro-
Systems. 41(3), March | gramming problems which terminates when an optimal or near-optimal solution is

1993, 1103- |reached. The motivation for considering an I;-optimal design versus I, or H-

1113. optimal designs is presented. An example probiem is solved to illustrate the com-
putational procedure as well as to provide an opportunity to compare the relative
performances of the /), I, and H.-optimal estimators in a practical situation.

60 | K. M. Nagpal and P.P. Khargonekar, 1991. [In this paper we consider the problems of filtering and smoothing for linear sys-
“Filtering and Smoothing in an H,, Set- tems in an H-infinity setting, i.e., the plant and measurement noises have bounded
ting,” IEEE Transactions on Automatic energies (are in L2), but are otherwise arbitrary. Two distinct situations for the ini-

Control, 36(2), Feb. 1991, 152-166. tial condition of the system are considered: in one case the initial condition is
assumed known, while in the other case, the initial condition is not known but the
initial condition, the plant, and measurement noise are in some weighted ball of
R(n) x L2. Both finite-horizon and infinite-horizon cases are considered. We
present necessary and sufficient conditions for the existence of estimators (both
filters and smoothers) that achieve a prescribed performance bound, develop algo-
rithms that result in performance within the bounds. In case of smoothers, we also
present the optimal smoother. The approach uses basic quadratic optimization
theory in time-domain setting, as a consequence of which both linear time-varying
and time-invariant systems can be considered with equal ease. (In the smoothing
problem, for linear time-varying systems, we consider only the finite-horizon
case).

61 |Z. Nehari, 1957. “On Bounded Bilinear (no abstract) %
Forms. Annals of Mathematics, 65(1), Jan.

1957, 153-162.

62 | P.J. Parker and R.R. Bitmead, 1987a. Given a stable, discrete time, single input single output system G(z) , but with|4b
“Adaptive Frequency Response Identifica- |only the input signal and the noise corrupted output signal available for measure-
tion.” 26th IEEE Conference on Decision |ment, we seck to find an approximation G(z) — a finite impulse response (FIR)
and Control, Los Angeles, California, filter — with |G- G.l = sup |G(e/9) - &(es9)|, 8 (-2, x] bounded and small. The
December 9-11, 1987. Proceedings (IEEE, |infinity norm has application in control theory and signal processing; furthermore,

New York), 348-353. it is a measure of the deviation in frequency response between G and G . Several
previous papers, attempt to identify G(z) in the frequency domain; these papers
fail to bound G - G in any norm.

Central to our method of identification is interpolation. First one estimates
accurately G(z) at n equally spaced frequencies. Here, n is a design parameter
one may freely choose. This estimation relics on filtering the input and output sig-
nals appropriately. Then estimates of G(ej2*t/n) come from a bank of n/2
decoupled least mean squares algorithms, each of two parameters; G(z) is then
the unique FIR filter of degree n— 1 with transfer function interpolating to these
estimates. G(z) is computationally easy to evaluate.

The resulting error bound has the form |G - Gl < MR+ K (1 + logon). Here
M and R are constants, dependent on G(z) with R < I ; the accuracy of estimat-
ing G(z) at the interpolation points determines K

63 | PJ. Parker and R.R. Bitmead, 1987b.

“Approximation of Stable and Unstable

Systems via Frequency Response Identifi-

cation.” 10th IFAC World Congress,

Munich, Germany, July 27-31, 1987. Pro-

ceedings (R. Isermann, ed., IFAC/Perfa-

mon, Oxford, England, 1988), 358-363.

64 |J.R. Partington, 1991. “Robust Identifica- | We consider system identification in H,, in the framework proposed by Helmicki,| 10A
tion and Interpolation in H,,"” International |Jacobson and Nett. An algorithm using the Jackson polynomials is proposed that | good exam-
Journal of Control, 54(5), Nov. 1991, 1281-| achieves an exponential convergence rate for exponentially stable systems. It is|ple (but too
1290. shown that this, and similar identification algorithms, can be successfully com- |similar to

bined with a model reduction procedure to produce low-order models. Connec-}others for
tions with the Nevanlinna-Pick interpolation problem are explored, and anjusein
algorithm is given in which the identified model interpolates the given noisy data. | report)
Some numerical results are provided for illustration. Finally, the case of
unbounded random noise is discussed and it is shown that one can still obtain con-

vergence with probability 1 under natural assumptions.

65 {J.R. Partington, 1992. “Robust Identifica-
tion in H,,” Journal of Mathematical Anal-
ysis and Applications, 166, 1992, 428-441.

66 |J.R. Partington, 1993. “Algorithms for Worst-case identification in H_, is considered in the situation in which corrupted|7B
Identification in H,., with Unequally Spaced |frequency response measurements are available at an arbitrary set of frequencies. | modifica-
Function Measurements.” International Two new classes of algorithms are presented: one yields polynomial models|tions so
Journal of Control, 58(1), July 1993, 21-31. | directly, the other is a two-stage algorithm producing rational models. Each has | that the fre-

improved convergence rates for the class of exponentially stable discrete-time sys- | quency
tems (with errors typically O(g) + O(A") for arbitrarily large r, where € is the|data may
noise level and A 1s the maximum spacing between identification points). A|be arbi-
numerical example is given. trarily
spaced

Appendix B: Abstracts Related to Heo-based Identification

181

| Authors [Title] Source Abstract Notes

67 |J.R. Partington and P.M. Mikild, 1995a. We consider worst-case analysis of system identification under less restrictive| 7B
“Worst-Case Analysis of the Least-Squares | assumptions on the noise than the /., bounded error condition. It is shown that the | examine
Method and Related Identification Meth- [least-squares method has a robust convergence property in /; identification, but stochastic/
ods” Systems and Control Letters, 24(3), |lacks a corresponding property in /; identification (as well as in all other non-Hil- | worst-case
Feb 13., 1995, 193-200. bert space settings). The latter result is in stark contrast with typical results in|stuff

asymptotic stochastic analysis of the least-squares method. Furthermore, it is
shown that the Khintchine inequality is useful in the analysis of least [, identifica-
tion methods.

68 | J.R. Partington and P.M. Mikil4, 1995b. We consider worst-case analysis of system identification by means of the linear| 7B
“Analysis of Linear Methods for Robust algorithms such as least-squares. We provide estimates for worst-case and aver- |/, identifi-
Identification in I,.” Automatica, 31(5), age errors, showing that worst-case robust convergence cannot occur in the /) |cation; lin-
May 1995, 755—7&8. identification problem. The case of periodic inputs is also analysed. Finally ajear

pseudorandomness assumption is introduced that allows more powerful conver-|algorithm

gence results in a deterministic framework. not
robustly
convergent;
no nontin-
ear algo-
rithm given

69 |R. Pintelon | Robust Iden- |IEEE Trans- | A frequency-domain maximum likelihood estimator (MLE) to estimate the trans-|0d
and tification of |actions on |fer function of lincar continuous-time systems has already been developed in [1].|maximum
J. Schoukens. | Transfer Instrumenta- |1t assumes independent Gaussian noise on both the input and the output coeffi- |likelihood

Functions in |tion and cients. In this paper, these results are extended to linear discrete-time systems. It; ID for dis-
the s- and z- |Measure- is demonstrated that most of the properties of the estimator remain unchanged | crete-time
Domains ment, 39(4), |when it is applied to measured input and output Fourier coefficients corrupted |systems
Aug. 1990, |with non-Gaussian errors. A robust Gaussian frequency-domain estimator results | with non-
565-573. from this. It is very useful for the practical identification of lincar systems. The|Gaussian
theoretical results are verified by simulations and experiments. noise

70 | B. Priel, E. Soroka, and U. Shaked, 1991. |The minimum variance state estimation of linear discrete-time systems with ran-(0d
“The Design of Optimal Reduced-Order |dom white noise input and partially noisy measurements is investigated. An
Stochastic Observers for Discrete-Time observer of minimal order is found which attains the minimum-variance estima-

Linear Systems.” IEEE Transactions on tion error. The structure of this observer is shown to depend strongly on the geom-

Automatic Control, 36(11), Nov. 1991, etry of the system. This geometry dictates the length of the delays that are applied

1300-1307. Reprinted in 36(12), Dec. on the measurements in order to obtain the optimal estimate. The transmission

1991, 1502-1509. properties of the observer are investigated for systems that are left invertible, and
free of measurement noise. An explicit expression is found for the transfer func-
tion matrix of this observer, from which a simple solution to the linear discrete-
time singular optimal filtering problem is obtained.

71 [D. E. Rivera, |Control-Rel- |/EEE Trans- |System identification is the most demanding and time consuming step in the}0d
J.E. Pollard, |evant Prefil- |actionson |implementation of advanced control in the refining and petrochemical industries. | control-rel-
and tering: a Automatic As a result, control-relevant identification, which views the identification problem |evant prefil-
C.E. Garcfa |Systematic |Control, in terms of its impact on control system design, is a topic that possesses significant | tering

Design 37(7), July |practical importance. In this paper, we specifically examine the use of control-rel-

Approach 1992,964- |evant prefiltering applied to parameter estimation using prediction-error meth-

ancr Case 974. ods. The prefiltering step ensures that the estimated model retains those plant

Study. characteristics that are most significant with regards to the user’s control require-
ments. We describe how to systematically build the prefilter in terms of the esti-
mated model structure, the desired closed-loop speed-of-response, and the
setpoint/disturbance characteristics of the control problem. Two implementation
algorithms are presented which are applied to the plant data obtained from a distil-
lation column. The results show that substantial improvements are obtained from
control-relevant prefiltering in output error and partial least-squares estimation,
while some caution must be exercised when applied to FIR and low-order ARX
estimation.

72|R.J.P. Accurate IEEE Trans- |1f approximate identification and model-based control design are used to accom- (0d
Schrama Identifica- actions on |plish a high-performance control system, then the two procedures have to be|ID/control

tion for Con- |Automatic |treated as a joint problem. Solving this joint problem by means of separate identi- |integration
trol: the Control, fication and control design procedures practically entails an iterative scheme. A

Necessity of |37(7),July |frequency-response identification technique and a robust control design method

an lterative |1992,991- |are used to set up such an iterative scheme. Its utility is illustrated by an example.

Scheme. 994.

73 |U. Shaked | A Frequency |IEEE Trans- |The properties of the minimum H,.-norm filtering estimation error are investi- 0od
and Domain actions on | gated, and the relation between the optimal estimator and the equalizing solution | state esti-
Y. Theodor |Approachto |Signal Pro- |to the standard H,,-minimization problem is discussed. The optimal estimation | mation in

the Problems |cessing, method is applied in the multivariable deconvolution problem. A simple deconvo-| H..,
of H_-Mini- |40(12), Dec. |lution filter of minimum order is obtained which minimizes the H..-norm of the
mum Error | 1992, 3001- [deconvolution error. The proposed methods of optimal estimation and deconvolu-
State Estima- |3011. tion are useful in cases where the statistics of the disturbance and the noise signals
tion and are not completely known, or in cases where it is required to minimize the maxi-
Deconvolu- mum singular value of the estimation, or the deconvolution, error spectrum.

tion.

Appendix B: Abstracts Related to Heo-based Identification

182

data. The model validation problem addressed here is: given experimental data
and a model with both additive noise and norm-bounded perturbations, is it possi-
ble that the model could produce the observed input-output data. This problem is
studied for the standard H,/p framework models. A necessary condition for such
a model to describe an experimental datum is obtained. Furthermore, for a large
class of models, in the robust control framework, this condition is computable as
the solution of a quadratic optimization problem.

Authors Title Source Abstract Notes

74 |S. Shats and | Discrete- IEEE Trans- |[The optimal discrete-time state estimation of continuous-time processes whose|0d
U. Shaked |Time Filter- {actionson |measurements are corrupted by additive white noise is considered in the case

ing of Noise |Automatic where the measurements are prefiltered by an integrator between sampling times.
Correlated | Control, A discrete-time equivalent model, in which the measurements are written as a
Continuous- |36(1), Jan. |function of the state vector at the same instant, is developed for the general case
Time Pro- 1991, 115- | where the continuous-time measurement and process noise signals are correlated.
cesses: Mod-{119. The equations governing the optimal filter, which is based on the discrete-time
eling and equivalent model, are presented. The properties of this filter are investigated
Derivation model, are presented. The properties of this filter are investigated, in the case of a
of the Sam- short sampling period, by deriving the first coefficients of the Maclaurin’s expan-
pling Period sions of the optimal gain and the error covariance matrices in powers of the sam-
Sensitivities. pling period. The obtained results are compared to the corresponding expressions
that have been previously derived for the sampled-data regulator.

75 |D. S. Shook, |A Control- |/EEE Trans- |This note addresses the question of a suitable “control-relevant identification”|0d
C. Mohtadi, |Relevant actions on | strategy for a class of long-range predictive controllers. It is shown that under cer-
and Identifica- |Automatic |tain conditions the best process model for predictive control is that which is esti-
S.L.Shah |tion Strategy |Control, mated using an identification objective function that is a dual of the control

for GPC. 37(7), July |objective function. The resulting nonlinear least squares calculation is asymptoti-
1992, 975- |cally equal to a standard recursive least squares with an appropriate (model and
980. controller-dependent) FIR data prefilter. Experimental results demonstrate the

validity and practicality of the proposed estimation law.

76 [R. S.Smith |Model Vali- |JEEE Trans- [Modemn robust control synthesis techniques aim at providing robustness with|5b
and dation: a actions on |respect to uncertainty in the form of both additive noise and plant perturbations. | good back-
J.C.Doyle [Connection |Automatic |On the other hand, the most popular system identification methods assume that all | ground

Between Control, uncertainty is in the form of additive noise. This has hampered the application of
Robust Con- |37(7), July |robust control methods to practical problems. This paper begins to address the
trol and Iden- |1992,942- |gap between the models used in control synthesis and those obtained from identi-
tification. 952. fication experiments by considering the connection between uncertain models and

77 | T. Soderstrom and K.J. Astrém, 1995, {no abstract) 5¢
“Special Issue on Trends in System Identifi-
cation.” Automatica, 31(12), Dec. 1995,

1689-1690.

78 |B. Wahlberg |Hard Fre- IEEE Trans- |The problem of deriving so-called hard error bounds for estimated transfer func-|0d
and quency- actions on |tions is addressed. A hard bound is one that is sure to be satisfied, i.e., the true
L. Ljung Domain Automatic |systems Nyquist plot will be confined with certainty to a given region, provided

Model Error | Control, that the underlying assumptions are satisfied. By blending a priori knowledge and
Bounds 37(7), July |information obtained from measured data, we show how the uncertainty of trans-
From Least- |1992,900- |fer function estimates can be quantified. The emphasis is on errors due to model
Squares Like |912. mismatch. The effects of unmodeled dynamics can be considered as bounded dis-
Identifica- turbances. Hence, techniques from set membership identification can be applied
tion Tech- to this problem. The approach taken corresponds to weighted least-squares esti-
niques. mation, and provides hard frequency-domain transfer function error bounds. The
main assumptions that are used in the current contribution are: that the measure-
ment errors are bounded; that the true system is indeed linear with a certain degree
of stability; and that there is some knowledge about the shape of the true fre-
quency response.

79 | W. Wang and |Relative- IEEE Trans- | A variant on the balanced stochastic truncation (BST) method for approximate|0d
M.G. Error H,, actions on | realization of power spectrum matrices is shown to form the basis for an identifi-
Safonov Identifica- |Automatic |cation procedure that is well-suited to the task of determining relative-error-

tion From Control, bounded approximate plant models for use in control design from input-output
Autocorrela- [37(7), July cross correlation data. Central to the theory is a new /_-norm bound on the rela-
tion Data — | 1992, 1000- |tive-error between an exact realization of the data and a BST approximate realiza-
A Stochastic {1004, tion.

Realization

Method.

80 | D. Xiong, Identifica- 1993 Ameri- |Convex programming techniques is employed to solve the problem of system|5B
G.Gu,and |tionin H_ can Control |identification in H,, which was first formulated in (Helmicki, Jacobson, and Nett,
K. Zhou via Convex |Conference, |IEEE Trans. Auto. Contr., 36, 1991). A unique feature of this proposed identifica-

Programming | San Fran- tion algorithm is that it has a performance close to that of a Nevanlinna Pick inter-
cisco, Cali- |polation based algorithm as studied in (1,5] which is strongly optimal within a
fornia, June |factor of two. An explicit bound is also derived for the worst case identification
2-4,1993. error measured in the H,, norm.

Proceedings
(American
Automatic
Control
Council,
Evanston,
Illinois),
1537-1538.

Appendix B: Abstracts Related to Heo-based Identification 183

| Authors Title Source Abstract Notes

81 |1. Yaesh and |GameTheory |28th IEEE | A game theory approach is presented to optimal state estimation. It is found that{4b
U. Shaked. |Approachto |Conference |under certain conditions a min-max estimation is identical to the optimal estima-

Optimal Lin- |on Decision |tion in the minimum H..-norm sense. These conditions are similar to those
ear Estima- |and Control, |obtained in (Mintz, “A Kalman filter as minimax estimator”, J. Opt. Theory and
tion in the Tampa, Flor- |Appl., 9, 1972, 99-111), where the relation between Kalman filtering and the min-
Minimum ida, Dec. 13- |max terminal state estimation has been explored. This new interpretation of the
H_-Nom 15, 1989. H_.-optimal state estimation provides a better insight into the mechanism of H..-
Sense. Proceedings |optimal filtering.

(IEEE, New

York), 421-

425.

82 |1 Yacsh and | Two-Degree- | IEEE Trans- | A solution is derived to the two-degree-of-freedom H,,-minimization problem that 0d

U. Shaked of-Freedom |actions on arises in the design of multivariable optimal continuous-time stochastic control
H.-Optimi- |Automatic ~ |systems. A decoupling approach is applied, which cnables a partially independent
zation of Control, design of the prefilter and the feedback controller and yields a simple solution to
Multivari- 36(11), Nov. |the optimization problem. This solution is obtained by transforming the optimiza-
able Feed- 1991, 1272- |tion problem into two standard form (“four-block”) problems.
back 1276.

Systems.

83 |1. Yaesh and |Nondefinite |JEEE Trans- | The problem of recursive nondefinite least squares state estimation of continuous- 5b

U. Shaked |Least actions on |time stationary processes is solved, by applying variational calculus. A compari-
Squares and | Automatic son of the derived solution to the result that is obtained for the H,,-minimum error
its Relation | Control, estimation suggests a new interpretation for the H..-optimal estimation mecha-
to H__-Mini- |36(12), Dec. |nism. According to this interpretation, the estimator tries to optimally estimate the
mum Error {1991, 1469- |required combination of the states, in the /;-norm sense, against the worst distur-
State Estima- | 1472. bance signal that stems from a fictitious measurement of this combination.
tion.

84 |1 Yaesh and U, Shaked, 1992. “Game The- |A possible game theory approach to optimal state estimation is presented. It is|4b
ory Approach to Optimal Linear State Esti- | found that in a certain differential game, the minimizer's policy is identical to the
mation and its Relation to the Minimum one obtained by optimal estimation in the minimum H,,-norm sense. This inter-

H_-Norm Estimation” IEEE Transactions |pretation of the H,-optimal state estimation provides a better insight into the

on Automatic Control, 37(6), June 1992, | mechanism of the H,.-optimal filtering, especially, in the case where the exoge-

828-831. nous signals are not energy bounded.

85 |1. Yaesh and |Game Theory | Interna- A game theory approach to the state-estimation of linear discrete-time systems is|4b
U. Shaked Approach to |tional Jour- |presented. The resulting state estimation suggests an alternative to the Kalman fil-

State Estima- | nal of ter, in cases where the exact statistics of the input and the measurement noise pro-
tion of Linear | Control, cesses is not known. It turns out that the game-theoretic filter provides an H..-
Discrete- 55(6), June |optimal estimation. Moreover, it is shown that the covariance matrix of the esti-
Time Pro- 1992, 1443- |mation error is bounded, from above, by the solution of a modified Riccati equa-
cesses and 1452. tion.

its Relation

to H,-Opti-

mal Estima-

tion.

86 [N. Young, 1988. An Introduction to Hilbert |(no abstract) 10a
Space, Cambridge University Press (Cam- solution to
bridge, England), 1988. the Nehari

problem

37 |G. Zames, 1979. “On the Metric Complex- |Estimates of € -entropy and £ -dimension in the Kolmogorov sense are obtained | 5b
ity of Causal Linear Systems: € -entropy |for a class of causal, linear, time-invariant, continuous-time systems under the{one of the
and & -dimension for Continuous-Time” |assumptions that impulse responses satisfy an exponential order condition | earliest ref-
1EEE Transactions on Automatic Control, ||f(f)| < Ce™', and frequency responses satisfy an attenuation condition|erences to
24(2), April 1979, 222-230. F(@) SKw!. The dependence of £-entropy and £ -dimension on the accu- the bounded

racy € is characterized by order, type, and power indexes. Similar results for the | determinis-

discrete-time case are reviewed and compared. tic
approach;
uses the
theory of
metric com-
plexity to
study
issues
related to
the com-
plexity of
identifica-
tion

Appendix B: Abstracts Related to Heo-based Identification

184

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

mair] data d, and an?N o T‘e ; lor
including suggestions for reducing this burden, to Wa nqton leadquarters Services,
VA 222h(§2-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Wuhinmon DC 20503.

Pubii ning burden lor thls collection of inbrmanon Is estimated to average 1 hour per response, inciuding the time for reviewing instructions, searching existing data sources, gathering and
amtainng the of information. Send oommoms rooardmg this burden estimate or any other aspect of this collection of information,
for | lons and Reports, 1215 Jeflerson Davis Highway, Suite 1204, Arlington,

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE
October 1997

3. REPORT TYPE AND DATES COVERED
Contractor Report

4.TITLE AND SUBTITLE
On-Line Modal State Monitoring of Slowly Time-Varying Structures

6. AUTHOR(S)
Erik A. Johnson, Lawrence A. Bergman, and Petros G. Voulgaris

5. FUNDING NUMBERS

529-50-04-00-RR-00-000

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois at Urbana-Champaign

Department of Aeronautical and Astronautical Engineering
104 South Wright Street

Urbana, Illinois 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

H-2202

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA Dryden Flight Research Center
Edwards, California

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-198057

11. SUPPLEMENTARY NOTES

Technical Monitor: Lawrence C. Freudinger, NASA Dryden. NASA Contract NAG 2-4001.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified—Unlimited
Subject Category 05

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

adaptive on-line monitoring scheme is developed and evaluated.

Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons
include condition-based maintenance, health monitoring, performance improvements, and control. In many
cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the
development of effective on-line monitoring schemes help to speed the decision-making process and reduce the
risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of
slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an
overview of several structural system identification methods. Included in this discussion and comparison are
H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage

14. SUBJECT TERMS

dynamics, On-line health monitoring

Modal filtering, Reciprocal modal vector, Parameter estimation, Structural

15. NUMBER OF PAGES
188

16. PRICE CODE
A09

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

OF ABSTRACT
Unclassified

19. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500
Linthicum Heights, MD 21090; (301)621-0390

Available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road,

Standard Form 298 (Flev 2-89)
Prescribed by ANS| Std, 239-18
296-102

